CLISC: Bridging clip and sam by enhanced cam for unsupervised brain tumor segmentation
- URL: http://arxiv.org/abs/2501.16246v1
- Date: Mon, 27 Jan 2025 17:43:51 GMT
- Title: CLISC: Bridging clip and sam by enhanced cam for unsupervised brain tumor segmentation
- Authors: Xiaochuan Ma, Jia Fu, Wenjun Liao, Shichuan Zhang, Guotai Wang,
- Abstract summary: A vision-language model (i.e., CLIP) is employed to obtain image-level pseudo-labels for training a classification network.
A 3D segmentation network is trained with the SAM-derived pseudo-labels, where low-quality pseudo-labels are filtered out in a self-learning process.
Our approach obtained an average Dice Similarity Score (DSC) of 85.60%, outperforming five state-of-the-art unsupervised segmentation methods by more than 10 percentage points.
- Score: 6.438259303569066
- License:
- Abstract: Brain tumor segmentation is important for diagnosis of the tumor, and current deep-learning methods rely on a large set of annotated images for training, with high annotation costs. Unsupervised segmentation is promising to avoid human annotations while the performance is often limited. In this study, we present a novel unsupervised segmentation approach that leverages the capabilities of foundation models, and it consists of three main steps: (1) A vision-language model (i.e., CLIP) is employed to obtain image-level pseudo-labels for training a classification network. Class Activation Mapping (CAM) is then employed to extract Regions of Interest (ROIs), where an adaptive masking-based data augmentation is used to enhance ROI identification.(2) The ROIs are used to generate bounding box and point prompts for the Segment Anything Model (SAM) to obtain segmentation pseudo-labels. (3) A 3D segmentation network is trained with the SAM-derived pseudo-labels, where low-quality pseudo-labels are filtered out in a self-learning process based on the similarity between the SAM's output and the network's prediction. Evaluation on the BraTS2020 dataset demonstrates that our approach obtained an average Dice Similarity Score (DSC) of 85.60%, outperforming five state-of-the-art unsupervised segmentation methods by more than 10 percentage points. Besides, our approach outperforms directly using SAM for zero-shot inference, and its performance is close to fully supervised learning.
Related papers
- Leveraging Labelled Data Knowledge: A Cooperative Rectification Learning Network for Semi-supervised 3D Medical Image Segmentation [27.94353306813293]
Semi-supervised 3D medical image segmentation aims to achieve accurate segmentation using few labelled data and numerous unlabelled data.
Main challenge in the design of semi-supervised learning methods is the effective use of the unlabelled data for training.
We introduce a new methodology to produce high-quality pseudo-labels for a consistency learning strategy.
arXiv Detail & Related papers (2025-02-17T05:29:50Z) - Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
We propose AuxSegNet+, a weakly supervised auxiliary learning framework to explore the rich information from saliency maps.
We also propose a cross-task affinity learning mechanism to learn pixel-level affinities from the saliency and segmentation feature maps.
arXiv Detail & Related papers (2024-03-02T10:03:21Z) - Morphology-Enhanced CAM-Guided SAM for weakly supervised Breast Lesion Segmentation [7.747608350830482]
We present a novel framework for weakly supervised lesion segmentation in early breast ultrasound images.
Our method uses morphological enhancement and class activation map (CAM)-guided localization.
This approach does not require pixel-level annotation, thereby reducing the cost of data annotation.
arXiv Detail & Related papers (2023-11-18T22:06:04Z) - Exploring Open-Vocabulary Semantic Segmentation without Human Labels [76.15862573035565]
We present ZeroSeg, a novel method that leverages the existing pretrained vision-language model (VL) to train semantic segmentation models.
ZeroSeg overcomes this by distilling the visual concepts learned by VL models into a set of segment tokens, each summarizing a localized region of the target image.
Our approach achieves state-of-the-art performance when compared to other zero-shot segmentation methods under the same training data.
arXiv Detail & Related papers (2023-06-01T08:47:06Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Unsupervised Dense Nuclei Detection and Segmentation with Prior
Self-activation Map For Histology Images [5.3882963853819845]
We propose a self-supervised learning based approach with a Prior Self-activation Module (PSM)
PSM generates self-activation maps from the input images to avoid labeling costs and further produce pseudo masks for the downstream task.
Compared with other fully-supervised and weakly-supervised methods, our method can achieve competitive performance without any manual annotations.
arXiv Detail & Related papers (2022-10-14T14:34:26Z) - Image Understands Point Cloud: Weakly Supervised 3D Semantic
Segmentation via Association Learning [59.64695628433855]
We propose a novel cross-modality weakly supervised method for 3D segmentation, incorporating complementary information from unlabeled images.
Basically, we design a dual-branch network equipped with an active labeling strategy, to maximize the power of tiny parts of labels.
Our method even outperforms the state-of-the-art fully supervised competitors with less than 1% actively selected annotations.
arXiv Detail & Related papers (2022-09-16T07:59:04Z) - Triple-View Feature Learning for Medical Image Segmentation [9.992387025633805]
TriSegNet is a semi-supervised semantic segmentation framework.
It uses triple-view feature learning on a limited amount of labelled data and a large amount of unlabeled data.
arXiv Detail & Related papers (2022-08-12T14:41:40Z) - PA-Seg: Learning from Point Annotations for 3D Medical Image
Segmentation using Contextual Regularization and Cross Knowledge Distillation [14.412073730567137]
We propose to annotate a segmentation target with only seven points in 3D medical images, and design a two-stage weakly supervised learning framework PA-Seg.
In the first stage, we employ geodesic distance transform to expand the seed points to provide more supervision signal.
In the second stage, we use predictions obtained by the model pre-trained in the first stage as pseudo labels.
arXiv Detail & Related papers (2022-08-11T07:00:33Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.