論文の概要: Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning
- arxiv url: http://arxiv.org/abs/2503.20752v2
- Date: Thu, 27 Mar 2025 03:13:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:13:35.080228
- Title: Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning
- Title(参考訳): Reason-RFT:Reinforcement Fine-Tuning for Visual Reasoning
- Authors: Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, Shanghang Zhang,
- Abstract要約: 視覚的推論能力は、複雑なマルチモーダルデータを理解する上で重要な役割を果たす。
既存の手法は、チェーン・オブ・ソートによる微調整によるVLM推論を改善する。
我々は新しい強化微調整フレームワークReason-RFTを提案する。
- 参考スコア(独自算出の注目度): 19.28434717501445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual reasoning abilities play a crucial role in understanding complex multimodal data, advancing both domain-specific applications and artificial general intelligence (AGI). Existing methods improve VLM reasoning via Chain-of-Thought (CoT) supervised fine-tuning, using meticulously annotated training data to enhance visual reasoning capabilities. However, this training paradigm may lead to overfitting and cognitive rigidity, restricting the model's ability to transfer visual reasoning skills across domains and limiting its real-world applicability. To address these limitations, we propose Reason-RFT, a novel reinforcement fine-tuning framework that significantly enhances generalization capabilities in visual reasoning tasks. Reason-RFT introduces a two-phase training framework for visual reasoning: (1) Supervised Fine-Tuning (SFT) with curated Chain-of-Thought (CoT) data activates the reasoning potential of Vision-Language Models (VLMs), followed by (2) Group Relative Policy Optimization (GRPO)-based reinforcement learning that generates multiple reasoning-response pairs, significantly enhancing generalization in visual reasoning tasks. To evaluate Reason-RFT's visual reasoning capabilities, we reconstructed a comprehensive dataset spanning visual counting, structure perception, and spatial transformation. Experimental results demonstrate Reasoning-RFT's three key advantages: (1) Performance Enhancement: achieving state-of-the-art results across multiple tasks, outperforming most mainstream open-source and proprietary models; (2) Generalization Superiority: consistently maintaining robust performance across diverse tasks and domains, outperforming alternative training paradigms; (3) Data Efficiency: excelling in few-shot learning scenarios while surpassing full-dataset SFT baselines. Project website: https://tanhuajie.github.io/ReasonRFT
- Abstract(参考訳): 視覚推論能力は、複雑なマルチモーダルデータを理解する上で重要な役割を担い、ドメイン固有のアプリケーションと人工知能(AGI)の両方を前進させる。
既存の手法では、視覚的推論能力を高めるために、微調整を監督するChain-of-Thought (CoT)によるVLM推論を改善する。
しかし、この訓練パラダイムは、過度に適合し、認知的剛性をもたらし、ドメイン間で視覚的推論スキルを伝達する能力を制限し、実際の適用性を制限する可能性がある。
これらの制約に対処するために,視覚推論タスクにおける一般化能力を大幅に向上させる新しい強化微調整フレームワークであるReason-RFTを提案する。
Reason-RFTは視覚推論のための2段階のトレーニングフレームワークを導入している: 1) CoT(Chain-of-Thought)データを補正したSFT(Supervised Fine-Tuning)はビジョン・ランゲージモデル(VLM)の推論ポテンシャルを活性化し、(2) グループ相対ポリシー最適化(GRPO)に基づく複数の推論応答対を生成する強化学習を行い、視覚推論タスクにおける一般化を著しく向上する。
Reason-RFTの視覚的推論能力を評価するために、視覚的数え上げ、構造知覚、空間的変換を対象とする包括的データセットを再構成した。
実験結果から,Reasoning-RFTの3つの主要な利点が示された。(1) 性能向上: 複数のタスクにまたがる最先端の成果を達成すること,(2) 主流のオープンソースおよびプロプライエタリなモデルを上回ること,(2) 一般化超越性: 多様なタスクやドメインにまたがる堅牢なパフォーマンスを一貫して維持すること,(3) 代替トレーニングパラダイムを上回ること,(3) データ効率: フルデータセットのSFTベースラインを越えながら,数ショットの学習シナリオにおいて優れたデータ効率。
プロジェクトウェブサイト: https://tanhuajie.github.io/ReasonRFT
関連論文リスト
- VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model [29.524164786422368]
最近、DeepSeek R1は、強化学習が大規模言語モデル(LLM)の推論能力を大幅に改善できることを示した。
視覚言語モデル(VLM)へのR1型強化学習の拡張について検討する。
VLM-R1 は,汎用視覚言語タスクにおける VLM の性能向上のために RL を利用した専用フレームワークである。
論文 参考訳(メタデータ) (2025-04-10T10:05:15Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
ビデオ理解におけるMLLMのポストトレーニング手法を評価するためのベンチマークであるSEED-Bench-R1を紹介する。
複雑な現実世界のビデオや、複数の質問の形式での複雑な日常的な計画タスクも含んでいる。
Qwen2-VL-Instruct-7Bをベースモデルとして、RLと教師付き微調整(SFT)を比較した。
我々の詳細な分析では、RLは視覚知覚を増強するが、しばしばコヒーレント推論連鎖を減少させる。
論文 参考訳(メタデータ) (2025-03-31T17:55:23Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
本研究では,類似の推論機能を大規模視覚言語モデル(LVLM)にうまく組み込むことができるか検討する。
本稿では,教師付き微調整(SFT)と強化学習(RL)を反復的に活用し,モデル一般化をさらに改善する手法を検討する。
OpenVLThinkerは、MathVista、MathVerse、MathVisionといった挑戦的なベンチマークで一貫して改善された推論性能を示すLVLMである。
論文 参考訳(メタデータ) (2025-03-21T17:52:43Z) - R1-Onevision: Advancing Generalized Multimodal Reasoning through Cross-Modal Formalization [26.757458496178437]
視覚知覚と深い推論のギャップを埋めるために設計されたマルチモーダル推論モデルであるR1-Onevisionを紹介する。
我々はR1-Onevisionデータセットを構築し、多様なドメインにまたがる詳細かつステップバイステップのマルチモーダル推論アノテーションを提供する。
先進的推論を育成するために,教師付き微調整と強化学習によりR1-Onevisionモデルをさらに発展させる。
実験結果から,R1-OnevisionはGPT-4oやQwen2.5-VLなど,最先端のモデルよりも優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2025-03-13T17:56:05Z) - Visual-RFT: Visual Reinforcement Fine-Tuning [75.20572976629646]
OpenAI o1のような大規模推論モデルにおける強化ファインチューニング(RFT)は、回答に対するフィードバックから学ぶ。
Visual-RFTはさらに、視覚タスクにおけるRTTの適用領域を拡張している。
論文 参考訳(メタデータ) (2025-03-03T18:16:32Z) - Cognitive Paradigms for Evaluating VLMs on Visual Reasoning Task [3.2228025627337864]
機械の視覚的推論を改善するには、ビジョン・ランゲージ・モデル(VLM)がどのように複雑な視覚的パターンを処理し、解釈するかを深く理解する必要がある。
本研究は,自然画像に基づくボナード問題に基づくVLM推論を体系的に解析する,認知に着想を得た新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-23T12:42:42Z) - DRIVINGVQA: Analyzing Visual Chain-of-Thought Reasoning of Vision Language Models in Real-World Scenarios with Driving Theory Tests [69.00444996464662]
本稿では、複雑な実世界のシナリオにおける視覚的連鎖推論を評価するために、駆動理論テストから得られた新しいベンチマークであるDrivingVQAを提案する。
実験の結果,オープンソースおよびプロプライエタリなLVLMは,ゼロショット設定下での視覚的連鎖推論に苦慮していることがわかった。
視覚的推論を改善するために関連エンティティを活用するトレーニング戦略について検討する。
論文 参考訳(メタデータ) (2025-01-08T18:31:16Z) - STEP: Enhancing Video-LLMs' Compositional Reasoning by Spatio-Temporal Graph-guided Self-Training [87.58996020705258]
Video Large Language Models (Video-LLMs) は近年,ビデオ理解タスクに強い派生性を示している。
ビデオLLMは、多段階の明示的時間的推論を必要とする構成的推論と、オブジェクトの関係、相互作用、イベントに苦労する。
本稿では,ビデオLLMが生ビデオから推論に富んだ微調整データを生成し,自己改善を実現するための,グラフ誘導型自己学習手法STEPを提案する。
論文 参考訳(メタデータ) (2024-11-29T11:54:55Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
視覚言語モデル(VLM)におけるチェーン・オブ・シント(CoT)推論は、解釈可能性と信頼性を向上させるために不可欠である。
我々は,より詳細な回答を必要とする推論タスクに対して,短時間でVLMを訓練することはよくないことを示す。
論文 参考訳(メタデータ) (2024-10-21T17:00:06Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。