MindfulLIME: A Stable Solution for Explanations of Machine Learning Models with Enhanced Localization Precision -- A Medical Image Case Study
- URL: http://arxiv.org/abs/2503.20758v1
- Date: Tue, 25 Mar 2025 14:48:14 GMT
- Title: MindfulLIME: A Stable Solution for Explanations of Machine Learning Models with Enhanced Localization Precision -- A Medical Image Case Study
- Authors: Shakiba Rahimiaghdam, Hande Alemdar,
- Abstract summary: We propose MindfulLIME, a novel algorithm that generates visual explanations using a graph-based pruning algorithm and uncertainty sampling.<n>Our experimental evaluation, conducted on a widely recognized chest X-ray dataset, confirms MindfulLIME's stability with a 100% success rate.<n> MindfulLIME improves the localization precision of visual explanations by reducing the distance between the generated explanations and the actual local annotations.
- Score: 0.7373617024876725
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Ensuring transparency in machine learning decisions is critically important, especially in sensitive sectors such as healthcare, finance, and justice. Despite this, some popular explainable algorithms, such as Local Interpretable Model-agnostic Explanations (LIME), often produce unstable explanations due to the random generation of perturbed samples. Random perturbation introduces small changes or noise to modified instances of the original data, leading to inconsistent explanations. Even slight variations in the generated samples significantly affect the explanations provided by such models, undermining trust and hindering the adoption of interpretable models. To address this challenge, we propose MindfulLIME, a novel algorithm that intelligently generates purposive samples using a graph-based pruning algorithm and uncertainty sampling. MindfulLIME substantially improves the consistency of visual explanations compared to random sampling approaches. Our experimental evaluation, conducted on a widely recognized chest X-ray dataset, confirms MindfulLIME's stability with a 100% success rate in delivering reliable explanations under identical conditions. Additionally, MindfulLIME improves the localization precision of visual explanations by reducing the distance between the generated explanations and the actual local annotations compared to LIME. We also performed comprehensive experiments considering various segmentation algorithms and sample numbers, focusing on stability, quality, and efficiency. The results demonstrate the outstanding performance of MindfulLIME across different segmentation settings, generating fewer high-quality samples within a reasonable processing time. By addressing the stability limitations of LIME in image data, MindfulLIME enhances the trustworthiness and interpretability of machine learning models in specific medical imaging applications, a critical domain.
Related papers
- Spatial Reasoning with Denoising Models [49.83744014336816]
We introduce a framework to perform reasoning over sets of continuous variables via denoising generative models.<n>We demonstrate for the first time, that order of generation can successfully be predicted by the denoising network itself.
arXiv Detail & Related papers (2025-02-28T14:08:30Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.<n>We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.<n>By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - Informed Correctors for Discrete Diffusion Models [31.814439169033616]
We propose a predictor-corrector sampling scheme where the corrector is informed by the diffusion model to more reliably counter the accumulating approximation errors.<n>On tokenized ImageNet 256x256, this approach consistently produces superior samples with fewer steps, achieving improved FID scores for discrete diffusion models.
arXiv Detail & Related papers (2024-07-30T23:29:29Z) - Counterfactual Fairness through Transforming Data Orthogonal to Bias [7.109458605736819]
We propose a novel data pre-processing algorithm, Orthogonal to Bias (OB)
OB is designed to eliminate the influence of a group of continuous sensitive variables, thus promoting counterfactual fairness in machine learning applications.
OB is model-agnostic, making it applicable to a wide range of machine learning models and tasks.
arXiv Detail & Related papers (2024-03-26T16:40:08Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
We introduce LaPLACE-explainer, designed to provide probabilistic cause-and-effect explanations for machine learning models.
The LaPLACE-Explainer component leverages the concept of a Markov blanket to establish statistical boundaries between relevant and non-relevant features.
Our approach offers causal explanations and outperforms LIME and SHAP in terms of local accuracy and consistency of explained features.
arXiv Detail & Related papers (2023-10-01T04:09:59Z) - Explaining Predictive Uncertainty with Information Theoretic Shapley
Values [6.49838460559032]
We adapt the popular Shapley value framework to explain various types of predictive uncertainty.
We implement efficient algorithms that perform well in a range of experiments on real and simulated data.
arXiv Detail & Related papers (2023-06-09T07:43:46Z) - Generating detailed saliency maps using model-agnostic methods [0.0]
We focus on a model-agnostic explainability method called RISE, elaborate on observed shortcomings of its grid-based approach.
modifications, collectively called VRISE (Voronoi-RISE), are meant to, respectively, improve the accuracy of maps generated using large occlusions.
We compare accuracy of saliency maps produced by VRISE and RISE on the validation split of ILSVRC2012, using a saliency-guided content insertion/deletion metric and a localization metric based on bounding boxes.
arXiv Detail & Related papers (2022-09-04T21:34:46Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - A Modified Perturbed Sampling Method for Local Interpretable
Model-agnostic Explanation [35.281127405430674]
Local Interpretable Model-agnostic Explanation (LIME) is a technique that explains the predictions of any classifier faithfully.
This paper proposes a novel Modified Perturbed Sampling operation for LIME (MPS-LIME)
In image classification, MPS-LIME converts the superpixel image into an undirected graph.
arXiv Detail & Related papers (2020-02-18T09:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.