Spatial Reasoning with Denoising Models
- URL: http://arxiv.org/abs/2502.21075v1
- Date: Fri, 28 Feb 2025 14:08:30 GMT
- Title: Spatial Reasoning with Denoising Models
- Authors: Christopher Wewer, Bart Pogodzinski, Bernt Schiele, Jan Eric Lenssen,
- Abstract summary: We introduce a framework to perform reasoning over sets of continuous variables via denoising generative models.<n>We demonstrate for the first time, that order of generation can successfully be predicted by the denoising network itself.
- Score: 49.83744014336816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Spatial Reasoning Models (SRMs), a framework to perform reasoning over sets of continuous variables via denoising generative models. SRMs infer continuous representations on a set of unobserved variables, given observations on observed variables. Current generative models on spatial domains, such as diffusion and flow matching models, often collapse to hallucination in case of complex distributions. To measure this, we introduce a set of benchmark tasks that test the quality of complex reasoning in generative models and can quantify hallucination. The SRM framework allows to report key findings about importance of sequentialization in generation, the associated order, as well as the sampling strategies during training. It demonstrates, for the first time, that order of generation can successfully be predicted by the denoising network itself. Using these findings, we can increase the accuracy of specific reasoning tasks from <1% to >50%.
Related papers
- Critical Iterative Denoising: A Discrete Generative Model Applied to Graphs [52.50288418639075]
We propose a novel framework called Iterative Denoising, which simplifies discrete diffusion and circumvents the issue by assuming conditional independence across time.
Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
arXiv Detail & Related papers (2025-03-27T15:08:58Z) - Generative Modeling with Bayesian Sample Inference [50.07758840675341]
We derive a novel generative model from the simple act of Gaussian posterior inference.<n>Treating the generated sample as an unknown variable to infer lets us formulate the sampling process in the language of Bayesian probability.<n>Our model uses a sequence of prediction and posterior update steps to narrow down the unknown sample from a broad initial belief.
arXiv Detail & Related papers (2025-02-11T14:27:10Z) - CCS: Controllable and Constrained Sampling with Diffusion Models via Initial Noise Perturbation [9.12693573953231]
We first observe an interesting phenomenon: the relationship between the change of generation outputs and the scale of initial noise perturbation is highly linear through the diffusion ODE sampling.
We propose a novel Controllable and Constrained Sampling method (CCS) together with a new controller algorithm for diffusion models to sample with desired statistical properties.
Results show that our CCS method achieves more precisely controlled sampling while maintaining superior sample quality and diversity.
arXiv Detail & Related papers (2025-02-07T05:30:48Z) - Memorization and Regularization in Generative Diffusion Models [5.128303432235475]
Diffusion models have emerged as a powerful framework for generative modeling.<n>The analysis highlights the need for regularization to avoid reproducing the analytically tractable minimizer.<n>Experiments are evaluated in the context of memorization, and directions for future development of regularization are highlighted.
arXiv Detail & Related papers (2025-01-27T05:17:06Z) - LoSAM: Local Search in Additive Noise Models with Mixed Mechanisms and General Noise for Global Causal Discovery [2.4305626489408465]
We propose local search in additive noise models, LoSAM, for learning a unique DAG in ANMs with mixed causal mechanisms and general noise distributions.<n>We prove consistency and runtime, ensuring scalability and sample efficiency.<n>We test LoSAM on synthetic and real-world data, demonstrating state-of-the-art performance across all mixed mechanism settings.
arXiv Detail & Related papers (2024-10-15T16:28:55Z) - Transition of $α$-mixing in Random Iterations with Applications in Queuing Theory [0.0]
We show the transfer of mixing properties from the exogenous regressor to the response via coupling arguments.
We also study Markov chains in random environments with drift and minorization conditions, even under non-stationary environments.
arXiv Detail & Related papers (2024-10-07T14:13:37Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) is a compact network that incorporates an additional simple yet effective step during inference.
OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters.
Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
arXiv Detail & Related papers (2023-11-27T12:02:42Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
We consider the task of counterfactual estimation from observational imaging data given a known causal structure.
We propose Diff-SCM, a deep structural causal model that builds on recent advances of generative energy-based models.
We find that Diff-SCM produces more realistic and minimal counterfactuals than baselines on MNIST data and can also be applied to ImageNet data.
arXiv Detail & Related papers (2022-02-21T12:23:01Z) - Harmonization with Flow-based Causal Inference [12.739380441313022]
This paper presents a normalizing-flow-based method to perform counterfactual inference upon a structural causal model (SCM) to harmonize medical data.
We evaluate on multiple, large, real-world medical datasets to observe that this method leads to better cross-domain generalization compared to state-of-the-art algorithms.
arXiv Detail & Related papers (2021-06-12T19:57:35Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.