論文の概要: Zero-Shot Audio-Visual Editing via Cross-Modal Delta Denoising
- arxiv url: http://arxiv.org/abs/2503.20782v1
- Date: Wed, 26 Mar 2025 17:59:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:21:11.754965
- Title: Zero-Shot Audio-Visual Editing via Cross-Modal Delta Denoising
- Title(参考訳): クロスモーダルデルタデノイングによるゼロショットオーディオ映像編集
- Authors: Yan-Bo Lin, Kevin Lin, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Chung-Ching Lin, Xiaofei Wang, Gedas Bertasius, Lijuan Wang,
- Abstract要約: そこで我々は,ゼロショット音声映像編集を導入し,新たなモデルトレーニングを必要とせず,特定のテキストプロンプトに合わせるために,オリジナル音声映像コンテンツを変換する新しいタスクを提案する。
この課題を評価するために、ゼロショットオーディオビデオ編集用に明示的に設計されたベンチマークデータセットAvED-Benchをキュレートする。
AvEDは、AvED-Benchと最近のOAVEデータセットの両方で優れた結果を示し、その一般化能力を検証する。
- 参考スコア(独自算出の注目度): 114.39028517171236
- License:
- Abstract: In this paper, we introduce zero-shot audio-video editing, a novel task that requires transforming original audio-visual content to align with a specified textual prompt without additional model training. To evaluate this task, we curate a benchmark dataset, AvED-Bench, designed explicitly for zero-shot audio-video editing. AvED-Bench includes 110 videos, each with a 10-second duration, spanning 11 categories from VGGSound. It offers diverse prompts and scenarios that require precise alignment between auditory and visual elements, enabling robust evaluation. We identify limitations in existing zero-shot audio and video editing methods, particularly in synchronization and coherence between modalities, which often result in inconsistent outcomes. To address these challenges, we propose AvED, a zero-shot cross-modal delta denoising framework that leverages audio-video interactions to achieve synchronized and coherent edits. AvED demonstrates superior results on both AvED-Bench and the recent OAVE dataset to validate its generalization capabilities. Results are available at https://genjib.github.io/project_page/AVED/index.html
- Abstract(参考訳): 本稿では,ゼロショット音声映像編集(ゼロショット音声映像編集)を導入する。これは,新たなモデルトレーニングを伴わずに,特定のテキストプロンプトに合わせるために,オリジナル音声映像コンテンツを変換する必要がある新しいタスクである。
この課題を評価するために、ゼロショットオーディオビデオ編集用に明示的に設計されたベンチマークデータセットAvED-Benchをキュレートする。
AvED-Benchには10秒間のビデオが110本あり、VGGSoundから11のカテゴリにまたがっている。
多様なプロンプトとシナリオを提供し、聴覚要素と視覚要素の正確な調整を必要とし、堅牢な評価を可能にします。
既存のゼロショット音声・ビデオ編集手法の制約、特にモダリティ間の同期とコヒーレンスにおいて、しばしば一貫性のない結果をもたらす。
これらの課題に対処するために、音声とビデオのインタラクションを活用して同期およびコヒーレントな編集を実現する、ゼロショットのクロスモーダルデルタ復調フレームワークであるAvEDを提案する。
AvEDは、AvED-Benchと最近のOAVEデータセットの両方で優れた結果を示し、その一般化能力を検証する。
結果はhttps://genjib.github.io/project_page/AVED/index.htmlで公開されている。
関連論文リスト
- Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis [56.01110988816489]
マルチモーダル・ジョイント・トレーニング・フレームワークであるMMAudioを用いて、高品質で同期化された音声、ビデオ、オプションのテキスト条件を合成することを提案する。
MMAudioは大規模で手軽に利用できるテキストオーディオデータを共同でトレーニングし、セマンティックに整合した高品質なオーディオサンプルを生成する。
MMAudioはテキスト・オーディオ・ジェネレーションにおいて驚くほどの競争力を発揮し、ジョイントトレーニングが単一モダリティのパフォーマンスを妨げないことを示す。
論文 参考訳(メタデータ) (2024-12-19T18:59:55Z) - Collaborative Hybrid Propagator for Temporal Misalignment in Audio-Visual Segmentation [39.38821481268827]
AVVS (Audio-visual Video segmentation) は、対応するオーディオと正確に一致した音声生成オブジェクトのピクセルレベルのマップを生成することを目的としている。
現在の手法は、オブジェクトレベルの情報に重点を置いているが、音声の意味的変化の境界を無視しているため、時間的ミスアライメントが生じる。
本稿では,協調型ハイブリッドプロパゲータフレームワーク(Co-Prop)を提案する。
論文 参考訳(メタデータ) (2024-12-11T07:33:18Z) - CATR: Combinatorial-Dependence Audio-Queried Transformer for
Audio-Visual Video Segmentation [43.562848631392384]
音声視覚映像のセグメンテーションは、画像フレーム内の音生成対象のピクセルレベルのマップを生成することを目的としている。
本稿では,それぞれの時間的・空間的次元から音声と映像の特徴を結合した非結合型音声・映像依存性を提案する。
論文 参考訳(メタデータ) (2023-09-18T12:24:02Z) - AdVerb: Visually Guided Audio Dereverberation [49.958724234969445]
本稿では,新しいオーディオ・ビジュアル・デバーベレーション・フレームワークであるAdVerbを紹介する。
残響音に加えて視覚的手がかりを用いてクリーンオーディオを推定する。
論文 参考訳(メタデータ) (2023-08-23T18:20:59Z) - WavJourney: Compositional Audio Creation with Large Language Models [38.39551216587242]
We present WavJourney, a novel framework that leverages Large Language Models to connect various audio model for audio creation。
WavJourneyを使えば、ユーザーはテキストによる説明だけで様々なオーディオ要素でストーリーテリングオーディオコンテンツを作成できる。
We show that WavJourney are capable to synthesize real audio aligned with textual-description semantic, spatial and temporal conditions。
論文 参考訳(メタデータ) (2023-07-26T17:54:04Z) - DiffAVA: Personalized Text-to-Audio Generation with Visual Alignment [30.38594416942543]
本稿では,遅延拡散モデル,すなわちDiffAVAに基づく視覚アライメントを用いた,新規でパーソナライズされたテキスト・音声生成手法を提案する。
我々のDiffAVAは、ビデオ特徴から時間情報を集約するマルチヘッドアテンショントランスフォーマーと、テキスト埋め込みで時間的視覚表現を融合するデュアルマルチモーダル残差ネットワークを活用している。
AudioCapsデータセットの実験結果から、提案したDiffAVAは、視覚的に整列したテキスト・オーディオ生成において、競合する性能を達成できることが示されている。
論文 参考訳(メタデータ) (2023-05-22T10:37:27Z) - Dense-Localizing Audio-Visual Events in Untrimmed Videos: A Large-Scale
Benchmark and Baseline [53.07236039168652]
本研究では,未編集映像に発生するすべての音声視覚イベントを共同でローカライズし,認識することを目的とした,濃密な局所化音声視覚イベントの課題に焦点をあてる。
このデータセットには、30万以上のオーディオ・ヴィジュアル・イベントを含む10万本のビデオが含まれている。
次に,様々な長さの音声視覚イベントをローカライズし,それら間の依存関係をひとつのパスでキャプチャする,学習ベースの新しいフレームワークを用いてタスクを定式化する。
論文 参考訳(メタデータ) (2023-03-22T22:00:17Z) - AudioGen: Textually Guided Audio Generation [116.57006301417306]
記述文キャプションに条件付き音声サンプルを生成する問題に対処する。
本研究では,テキスト入力に条件付き音声サンプルを生成する自動回帰モデルであるAaudioGenを提案する。
論文 参考訳(メタデータ) (2022-09-30T10:17:05Z) - Audio-Visual Synchronisation in the wild [149.84890978170174]
我々は,VGG-Sound Syncという,高い音声・視覚相関を持つテストセットを同定し,キュレートする。
任意の長さの音響信号と視覚信号のモデル化に特化して設計された,トランスフォーマーに基づく多数のアーキテクチャ変種を比較した。
我々は,新しいVGG-Sound Syncビデオデータセットにおいて,160以上の多様なクラスと一般的な音声-視覚同期のための最初のベンチマークを設定した。
論文 参考訳(メタデータ) (2021-12-08T17:50:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。