論文の概要: The Data Sharing Paradox of Synthetic Data in Healthcare
- arxiv url: http://arxiv.org/abs/2503.20847v1
- Date: Wed, 26 Mar 2025 16:06:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:54:13.582087
- Title: The Data Sharing Paradox of Synthetic Data in Healthcare
- Title(参考訳): 医療におけるデータ共有のパラドックス
- Authors: Jim Achterberg, Bram van Dijk, Saif ul Islam, Hafiz Muhammad Waseem, Parisis Gallos, Gregory Epiphaniou, Carsten Maple, Marcel Haas, Marco Spruit,
- Abstract要約: 本稿では、合成データがデータ共有のために設計されているが、しばしば制限されているパラドックス的状況について論じる。
我々はこの問題を緩和するためにどのようにフィールドを前進させるかについて議論する。
- 参考スコア(独自算出の注目度): 9.66493160220239
- License:
- Abstract: Synthetic data offers a promising solution to privacy concerns in healthcare by generating useful datasets in a privacy-aware manner. However, although synthetic data is typically developed with the intention of sharing said data, ambiguous reidentification risk assessments often prevent synthetic data from seeing the light of day. One of the main causes is that privacy metrics for synthetic data, which inform on reidentification risks, are not well-aligned with practical requirements and regulations regarding data sharing in healthcare. This article discusses the paradoxical situation where synthetic data is designed for data sharing but is often still restricted. We also discuss how the field should move forward to mitigate this issue.
- Abstract(参考訳): 合成データは、プライバシーに配慮した有用なデータセットを生成することで、医療におけるプライバシー問題に対する有望な解決策を提供する。
しかしながら、合成データは通常、そのデータを共有する目的で開発されているが、曖昧な再同定リスクアセスメントは、合成データが日の光を見るのを防ぐことが多い。
主な原因の1つは、医療におけるデータ共有に関する実践的な要件や規制と整合していない、再識別のリスクを知らせる合成データのプライバシー指標である。
本稿では、合成データがデータ共有のために設計されているが、しばしば制限されているパラドックス的状況について論じる。
我々はまた、この問題を緩和するためにどのようにフィールドを前進させるべきかについても議論する。
関連論文リスト
- Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data [104.30479583607918]
第2回FRCSyn-onGoingチャレンジは、CVPR 2024で開始された第2回顔認識チャレンジ(FRCSyn)に基づいている。
我々は、顔認識における現在の課題を解決するために、個々のデータと実際のデータの組み合わせの両方で合成データの利用を検討することに重点を置いている。
論文 参考訳(メタデータ) (2024-12-02T11:12:01Z) - Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented Generation (RAG)は、外部知識ソースから取得した関連情報を統合することにより、言語モデルの出力を強化する。
RAGシステムは、プライベートデータを取得する際に深刻なプライバシーリスクに直面する可能性がある。
検索データに対するプライバシー保護の代替として,合成データを用いる方法を提案する。
論文 参考訳(メタデータ) (2024-06-20T22:53:09Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Practical considerations on using private sampling for synthetic data [1.3654846342364308]
合成データ生成の異なるプライバシは、合成データを自由に使用しながらプライバシを保存する能力のために、多くの注目を集めている。
プライベートサンプリングは、プライバシーと正確性のために厳密な境界を持つ微分プライベートな合成データを構築する最初のノイズフリー手法である。
本稿では,プライベートサンプリングアルゴリズムの実装と,実例における制約の現実性について議論する。
論文 参考訳(メタデータ) (2023-12-12T10:20:04Z) - The Use of Synthetic Data to Train AI Models: Opportunities and Risks
for Sustainable Development [0.6906005491572401]
本稿では,合成データの生成,利用,普及を規定する政策について検討する。
優れた合成データポリシーは、プライバシの懸念とデータの有用性のバランスを取らなければならない。
論文 参考訳(メタデータ) (2023-08-31T23:18:53Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - Synthetic Data: Methods, Use Cases, and Risks [11.413309528464632]
研究コミュニティと業界の両方で勢いを増す可能性のある選択肢は、代わりに合成データを共有することだ。
我々は、合成データについて穏やかに紹介し、そのユースケース、未適応のプライバシー問題、そしてその固有の制限を効果的なプライバシー強化技術として論じます。
論文 参考訳(メタデータ) (2023-03-01T16:35:33Z) - Downstream Fairness Caveats with Synthetic Healthcare Data [21.54509987309669]
プライバシ法は患者のプライバシーを守るためにElectronic Medical Records (EMR)のような健康データへのアクセスを制限する。
本稿では, 偏見を生かした医療データを総合的に評価し, フェアネス緩和技術が便益性に与える影響について検討する。
論文 参考訳(メタデータ) (2022-03-09T00:52:47Z) - Representative & Fair Synthetic Data [68.8204255655161]
公平性制約を自己監督学習プロセスに組み込むためのフレームワークを提示する。
私たちはuci成人国勢調査データセットの代表者および公正版を作成します。
我々は、代表的かつ公正な合成データを将来有望なビルディングブロックとみなし、歴史的世界ではなく、私たちが生きようとしている世界についてアルゴリズムを教える。
論文 参考訳(メタデータ) (2021-04-07T09:19:46Z) - Fidelity and Privacy of Synthetic Medical Data [0.0]
医療記録のデジタル化は、新時代のビッグデータから臨床科学へとつながった。
個々のレベルの医療データを共有する必要性は増え続けており、これ以上緊急ではない。
ビッグデータの利用に対する熱意は、患者の自律性とプライバシに対する完全な適切な懸念によって誘惑された。
論文 参考訳(メタデータ) (2021-01-18T23:01:27Z) - Hide-and-Seek Privacy Challenge [88.49671206936259]
NeurIPS 2020 Hide-and-Seek Privacy Challengeは、両方の問題を解決するための新しい2トラックの競争だ。
我々の頭から頭までのフォーマットでは、新しい高品質な集中ケア時系列データセットを用いて、合成データ生成トラック(「ヒッシャー」)と患者再識別トラック(「シーカー」)の参加者が直接対決する。
論文 参考訳(メタデータ) (2020-07-23T15:50:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。