論文の概要: Practical considerations on using private sampling for synthetic data
- arxiv url: http://arxiv.org/abs/2312.07139v1
- Date: Tue, 12 Dec 2023 10:20:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 12:26:52.802790
- Title: Practical considerations on using private sampling for synthetic data
- Title(参考訳): 合成データにおけるプライベートサンプリングの実践的考察
- Authors: Clément Pierquin, Bastien Zimmermann, Matthieu Boussard,
- Abstract要約: 合成データ生成の異なるプライバシは、合成データを自由に使用しながらプライバシを保存する能力のために、多くの注目を集めている。
プライベートサンプリングは、プライバシーと正確性のために厳密な境界を持つ微分プライベートな合成データを構築する最初のノイズフリー手法である。
本稿では,プライベートサンプリングアルゴリズムの実装と,実例における制約の現実性について議論する。
- 参考スコア(独自算出の注目度): 1.3654846342364308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence and data access are already mainstream. One of the main challenges when designing an artificial intelligence or disclosing content from a database is preserving the privacy of individuals who participate in the process. Differential privacy for synthetic data generation has received much attention due to the ability of preserving privacy while freely using the synthetic data. Private sampling is the first noise-free method to construct differentially private synthetic data with rigorous bounds for privacy and accuracy. However, this synthetic data generation method comes with constraints which seem unrealistic and not applicable for real-world datasets. In this paper, we provide an implementation of the private sampling algorithm and discuss the realism of its constraints in practical cases.
- Abstract(参考訳): 人工知能とデータアクセスはすでに主流だ。
人工知能を設計したり、データベースからコンテンツを開示する際の大きな課題の1つは、プロセスに参加する個人のプライバシを保存することである。
合成データ生成のための微分プライバシーは、合成データを自由に使用しながらプライバシを保存する能力のために、多くの注目を集めている。
プライベートサンプリングは、プライバシーと正確性のために厳密な境界を持つ微分プライベートな合成データを構築する最初のノイズフリー手法である。
しかし、この合成データ生成手法には、現実的なデータセットには適用できないような制約が伴っている。
本稿では,プライベートサンプリングアルゴリズムの実装と,実例における制約の現実性について議論する。
関連論文リスト
- Tabular Data Synthesis with Differential Privacy: A Survey [24.500349285858597]
データ共有はコラボレーティブなイノベーションの前提条件であり、さまざまなデータセットを活用して深い洞察を得ることを可能にします。
データ合成は、実際のデータの統計特性を保存する人工データセットを生成することで、この問題に対処する。
プライバシーに配慮したデータ共有に対する、有望なアプローチとして、異なるプライベートなデータ合成が登場している。
論文 参考訳(メタデータ) (2024-11-04T06:32:48Z) - Evaluating Differentially Private Synthetic Data Generation in High-Stakes Domains [9.123834467375532]
実データの代わりに、微分プライベート言語モデルから生成された合成データを用いて、高速領域におけるNLPの開発を容易にする可能性について検討する。
以上の結果から,従来の簡易評価では,合成データの有用性,プライバシ,公平性を強調できなかったことが示唆された。
論文 参考訳(メタデータ) (2024-10-10T19:31:02Z) - Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented Generation (RAG)は、外部知識ソースから取得した関連情報を統合することにより、言語モデルの出力を強化する。
RAGシステムは、プライベートデータを取得する際に深刻なプライバシーリスクに直面する可能性がある。
検索データに対するプライバシー保護の代替として,合成データを用いる方法を提案する。
論文 参考訳(メタデータ) (2024-06-20T22:53:09Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
フェデレーション・インストラクション・チューニング(FedIT)は、複数のデータ所有者間で協調的なトレーニングを統合することで、有望なソリューションである。
FedITは、インストラクショナルデータの不足や、トレーニングデータ抽出攻撃への露出リスクなどの制限に直面している。
本稿では,FewFedPITを提案する。このFewFedPITは,フェデレートされた数ショット学習のプライバシー保護とモデル性能を同時に向上する。
論文 参考訳(メタデータ) (2024-03-10T08:41:22Z) - Scaling While Privacy Preserving: A Comprehensive Synthetic Tabular Data
Generation and Evaluation in Learning Analytics [0.412484724941528]
プライバシーは学習分析(LA)の進歩に大きな障害となり、匿名化の不十分さやデータ誤用といった課題を提示している。
合成データは潜在的な対策として現れ、堅牢なプライバシー保護を提供する。
LAの合成データに関する以前の研究では、プライバシーとデータユーティリティの微妙なバランスを評価するのに不可欠な、徹底的な評価が欠如していた。
論文 参考訳(メタデータ) (2024-01-12T20:27:55Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - The Use of Synthetic Data to Train AI Models: Opportunities and Risks
for Sustainable Development [0.6906005491572401]
本稿では,合成データの生成,利用,普及を規定する政策について検討する。
優れた合成データポリシーは、プライバシの懸念とデータの有用性のバランスを取らなければならない。
論文 参考訳(メタデータ) (2023-08-31T23:18:53Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Synthetic Text Generation with Differential Privacy: A Simple and
Practical Recipe [32.63295550058343]
テキスト領域におけるシンプルで実用的なレシピは、強力なプライバシー保護を備えた有用な合成テキストを生成するのに有効であることを示す。
提案手法は,非私的テキストと実用性で競合する合成テキストを生成する。
論文 参考訳(メタデータ) (2022-10-25T21:21:17Z) - Representative & Fair Synthetic Data [68.8204255655161]
公平性制約を自己監督学習プロセスに組み込むためのフレームワークを提示する。
私たちはuci成人国勢調査データセットの代表者および公正版を作成します。
我々は、代表的かつ公正な合成データを将来有望なビルディングブロックとみなし、歴史的世界ではなく、私たちが生きようとしている世界についてアルゴリズムを教える。
論文 参考訳(メタデータ) (2021-04-07T09:19:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。