論文の概要: Byzantine-Robust Federated Learning Using Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2503.20884v2
- Date: Mon, 08 Sep 2025 09:53:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:02.987826
- Title: Byzantine-Robust Federated Learning Using Generative Adversarial Networks
- Title(参考訳): 生成逆ネットワークを用いたビザンチン・ロバスト連携学習
- Authors: Usama Zafar, André Teixeira, Salman Toor,
- Abstract要約: フェデレートラーニング(FL)は、生データを共有せずに分散クライアント間で協調的なモデルトレーニングを可能にするが、その堅牢性は、データやモデル中毒といったビザンチンの行動によって脅かされている。
本稿では,クライアントの更新を検証するための代表データを生成するために,サーバ上の条件付き生成逆ネットワーク(cGAN)を活用することで,これらの課題に対処する防衛フレームワークを提案する。
このアプローチは、外部データセットへの依存を排除し、多様な攻撃戦略に適応し、標準FLにシームレスに統合する。
- 参考スコア(独自算出の注目度): 0.8739101659113154
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated learning (FL) enables collaborative model training across distributed clients without sharing raw data, but its robustness is threatened by Byzantine behaviors such as data and model poisoning. Existing defenses face fundamental limitations: robust aggregation rules incur error lower bounds that grow with client heterogeneity, while detection-based methods often rely on heuristics (e.g., a fixed number of malicious clients) or require trusted external datasets for validation. We present a defense framework that addresses these challenges by leveraging a conditional generative adversarial network (cGAN) at the server to synthesize representative data for validating client updates. This approach eliminates reliance on external datasets, adapts to diverse attack strategies, and integrates seamlessly into standard FL workflows. Extensive experiments on benchmark datasets demonstrate that our framework accurately distinguishes malicious from benign clients while maintaining overall model accuracy. Beyond Byzantine robustness, we also examine the representativeness of synthesized data, computational costs of cGAN training, and the transparency and scalability of our approach.
- Abstract(参考訳): フェデレートラーニング(FL)は、生データを共有せずに分散クライアント間で協調的なモデルトレーニングを可能にするが、その堅牢性は、データやモデル中毒といったビザンチンの行動によって脅かされている。
堅牢なアグリゲーションルールは、クライアントの不均一性によって成長するエラーの低いバウンダリを発生させる。一方、検出ベースのメソッドは、しばしばヒューリスティック(例えば、悪意のあるクライアントの数)に依存するか、検証のために信頼できる外部データセットを必要とする。
本稿では,クライアントの更新を検証するための代表データを生成するために,サーバ上の条件付き生成逆ネットワーク(cGAN)を活用することで,これらの課題に対処する防衛フレームワークを提案する。
このアプローチは、外部データセットへの依存を排除し、さまざまな攻撃戦略に適応し、標準のFLワークフローにシームレスに統合する。
ベンチマークデータセットに対する大規模な実験により、我々のフレームワークは、全体モデル精度を維持しながら、悪質なクライアントと悪質なクライアントを正確に区別することを示した。
ビザンチンの堅牢性以外にも、合成データの表現性、cGANトレーニングの計算コスト、我々のアプローチの透明性とスケーラビリティについても検討する。
関連論文リスト
- Robust Knowledge Distillation in Federated Learning: Counteracting Backdoor Attacks [12.227509826319267]
フェデレートラーニング(FL)は、データのプライバシを保持しながら、複数のデバイス間で協調的なモデルトレーニングを可能にする。
悪意のある参加者が世界モデルに侵入できるバックドア攻撃の影響を受けやすい。
本稿では,制約的仮定に頼らずにモデル整合性を高める新しい防御機構であるロバスト知識蒸留(RKD)を提案する。
論文 参考訳(メタデータ) (2025-02-01T22:57:08Z) - Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL)は、集中型機械学習(ML)に関連するプライバシー問題に対して、有望な解決策を提供する。
FLは、敵クライアントがトレーニングデータやモデル更新を操作して全体的なモデルパフォーマンスを低下させる、毒殺攻撃など、さまざまなセキュリティ上の脅威に対して脆弱である。
本稿では,時系列タスクにおけるフェデレート学習における中毒攻撃の軽減を目的とした防御機構を提案する。
論文 参考訳(メタデータ) (2024-11-05T16:23:19Z) - Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
Celtiberoは, 対向操作に対する強靭性を高めるため, 層状アグリゲーションを統合した新しい防御機構である。
セルティベロは、標的外および標的標的の毒殺攻撃において、最小攻撃成功率(ASR)を維持しつつ、常に高い主タスク精度(MTA)を達成することを実証した。
論文 参考訳(メタデータ) (2024-08-26T12:54:00Z) - Fed-Credit: Robust Federated Learning with Credibility Management [18.349127735378048]
Federated Learning(FL)は、分散デバイスやデータソースのモデルトレーニングを可能にする、新興の機械学習アプローチである。
我々は、Fed-Creditと呼ばれる信頼性管理手法に基づく堅牢なFLアプローチを提案する。
その結果、比較的低い計算複雑性を維持しながら、敵攻撃に対する精度とレジリエンスが向上した。
論文 参考訳(メタデータ) (2024-05-20T03:35:13Z) - Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
フェデレートラーニング(Federated Learning, FL)は、参加者が共有機械学習モデルを集合的にトレーニングすることを可能にする、協調学習パラダイムである。
データ中毒攻撃に対する現在のFL防衛戦略は、正確性と堅牢性の間のトレードオフを含む。
本稿では、FLにおけるデータ中毒攻撃を効果的に対処するために、ゾーンベースの退避更新(ZBDU)機構を利用するFedZZを提案する。
論文 参考訳(メタデータ) (2024-04-05T14:37:49Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
フェデレートラーニング(Federated Learning)は、プライバシの問題に対処するために設計された分散フレームワークである。
新たなアタックサーフェスを導入しており、データは独立に、そしてIdentically Distributedである場合、特に困難である。
我々は,モデル中毒に対する簡易かつ効果的な新しい防御アルゴリズムであるFedCCを提案する。
論文 参考訳(メタデータ) (2022-12-05T01:52:32Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。