Feature Modulation for Semi-Supervised Domain Generalization without Domain Labels
- URL: http://arxiv.org/abs/2503.20897v1
- Date: Wed, 26 Mar 2025 18:10:10 GMT
- Title: Feature Modulation for Semi-Supervised Domain Generalization without Domain Labels
- Authors: Venuri Amarasinghe, Asini Jayakody, Isun Randila, Kalinga Bandara, Chamuditha Jayanga Galappaththige, Ranga Rodrigo,
- Abstract summary: Semi-supervised domain generalization (SSDG) leverages a small fraction of labeled data alongside unlabeled data to enhance model generalization.<n>Most of the existing SSDG methods rely on pseudo-labeling (PL) for unlabeled data, often assuming access to domain labels-a privilege not always available.<n>We tackle the more challenging domain-label agnostic SSDG, where domain labels for unlabeled data are not available during training.<n>We propose a feature modulation strategy that enhances class-discriminative features while suppressing domain-specific information.
- Score: 1.2461397728727208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised domain generalization (SSDG) leverages a small fraction of labeled data alongside unlabeled data to enhance model generalization. Most of the existing SSDG methods rely on pseudo-labeling (PL) for unlabeled data, often assuming access to domain labels-a privilege not always available. However, domain shifts introduce domain noise, leading to inconsistent PLs that degrade model performance. Methods derived from FixMatch suffer particularly from lower PL accuracy, reducing the effectiveness of unlabeled data. To address this, we tackle the more challenging domain-label agnostic SSDG, where domain labels for unlabeled data are not available during training. First, we propose a feature modulation strategy that enhances class-discriminative features while suppressing domain-specific information. This modulation shifts features toward Similar Average Representations-a modified version of class prototypes-that are robust across domains, encouraging the classifier to distinguish between closely related classes and feature extractor to form tightly clustered, domain-invariant representations. Second, to mitigate domain noise and improve pseudo-label accuracy, we introduce a loss-scaling function that dynamically lowers the fixed confidence threshold for pseudo-labels, optimizing the use of unlabeled data. With these key innovations, our approach achieves significant improvements on four major domain generalization benchmarks-even without domain labels. We will make the code available.
Related papers
- GenGMM: Generalized Gaussian-Mixture-based Domain Adaptation Model for Semantic Segmentation [0.9626666671366837]
We introduce the Generalized Gaussian-mixture-based (GenGMM) domain adaptation model, which harnesses the underlying data distribution in both domains.
Experiments demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-10-21T20:21:09Z) - Disentangling Masked Autoencoders for Unsupervised Domain Generalization [57.56744870106124]
Unsupervised domain generalization is fast gaining attention but is still far from well-studied.
Disentangled Masked Auto (DisMAE) aims to discover the disentangled representations that faithfully reveal intrinsic features.
DisMAE co-trains the asymmetric dual-branch architecture with semantic and lightweight variation encoders.
arXiv Detail & Related papers (2024-07-10T11:11:36Z) - Domain Adaptation Using Pseudo Labels [16.79672078512152]
In the absence of labeled target data, unsupervised domain adaptation approaches seek to align the marginal distributions of the source and target domains.
We deploy a pretrained network to determine accurate labels for the target domain using a multi-stage pseudo-label refinement procedure.
Our results on multiple datasets demonstrate the effectiveness of our simple procedure in comparison with complex state-of-the-art techniques.
arXiv Detail & Related papers (2024-02-09T22:15:11Z) - Inter-Domain Mixup for Semi-Supervised Domain Adaptation [108.40945109477886]
Semi-supervised domain adaptation (SSDA) aims to bridge source and target domain distributions, with a small number of target labels available.
Existing SSDA work fails to make full use of label information from both source and target domains for feature alignment across domains.
This paper presents a novel SSDA approach, Inter-domain Mixup with Neighborhood Expansion (IDMNE), to tackle this issue.
arXiv Detail & Related papers (2024-01-21T10:20:46Z) - Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
We propose a novel SSDA approach named Graph-based Adaptive Betweenness Clustering (G-ABC) for achieving categorical domain alignment.
Our method outperforms previous state-of-the-art SSDA approaches, demonstrating the superiority of the proposed G-ABC algorithm.
arXiv Detail & Related papers (2024-01-21T09:57:56Z) - CA-UDA: Class-Aware Unsupervised Domain Adaptation with Optimal
Assignment and Pseudo-Label Refinement [84.10513481953583]
unsupervised domain adaptation (UDA) focuses on the selection of good pseudo-labels as surrogates for the missing labels in the target data.
source domain bias that deteriorates the pseudo-labels can still exist since the shared network of the source and target domains are typically used for the pseudo-label selections.
We propose CA-UDA to improve the quality of the pseudo-labels and UDA results with optimal assignment, a pseudo-label refinement strategy and class-aware domain alignment.
arXiv Detail & Related papers (2022-05-26T18:45:04Z) - Better Pseudo-label: Joint Domain-aware Label and Dual-classifier for
Semi-supervised Domain Generalization [26.255457629490135]
We propose a novel framework via joint domain-aware labels and dual-classifier to produce high-quality pseudo-labels.
To predict accurate pseudo-labels under domain shift, a domain-aware pseudo-labeling module is developed.
Also, considering inconsistent goals between generalization and pseudo-labeling, we employ a dual-classifier to independently perform pseudo-labeling and domain generalization in the training process.
arXiv Detail & Related papers (2021-10-10T15:17:27Z) - Select, Label, and Mix: Learning Discriminative Invariant Feature
Representations for Partial Domain Adaptation [55.73722120043086]
We develop a "Select, Label, and Mix" (SLM) framework to learn discriminative invariant feature representations for partial domain adaptation.
First, we present a simple yet efficient "select" module that automatically filters out outlier source samples to avoid negative transfer.
Second, the "label" module iteratively trains the classifier using both the labeled source domain data and the generated pseudo-labels for the target domain to enhance the discriminability of the latent space.
arXiv Detail & Related papers (2020-12-06T19:29:32Z) - Domain Adaptation with Auxiliary Target Domain-Oriented Classifier [115.39091109079622]
Domain adaptation aims to transfer knowledge from a label-rich but heterogeneous domain to a label-scare domain.
One of the most popular SSL techniques is pseudo-labeling that assigns pseudo labels for each unlabeled data.
We propose a new pseudo-labeling framework called Auxiliary Target Domain-Oriented (ATDOC)
ATDOC alleviates the bias by introducing an auxiliary classifier for target data only, to improve the quality of pseudo labels.
arXiv Detail & Related papers (2020-07-08T15:01:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.