Alleviating LLM-based Generative Retrieval Hallucination in Alipay Search
- URL: http://arxiv.org/abs/2503.21098v1
- Date: Thu, 27 Mar 2025 02:36:48 GMT
- Title: Alleviating LLM-based Generative Retrieval Hallucination in Alipay Search
- Authors: Yedan Shen, Kaixin Wu, Yuechen Ding, Jingyuan Wen, Hong Liu, Mingjie Zhong, Zhouhan Lin, Jia Xu, Linjian Mo,
- Abstract summary: Generative retrieval (GR) has revolutionized document retrieval with the advent of large language models (LLMs)<n>We propose an optimized GR framework designed to alleviate retrieval hallucination.<n>We employ LLMs to assess and reason GR retrieved query-document (q-d) pairs, and then distill the reasoning data as transferred knowledge to the GR model.
- Score: 14.769809465812587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative retrieval (GR) has revolutionized document retrieval with the advent of large language models (LLMs), and LLM-based GR is gradually being adopted by the industry. Despite its remarkable advantages and potential, LLM-based GR suffers from hallucination and generates documents that are irrelevant to the query in some instances, severely challenging its credibility in practical applications. We thereby propose an optimized GR framework designed to alleviate retrieval hallucination, which integrates knowledge distillation reasoning in model training and incorporate decision agent to further improve retrieval precision. Specifically, we employ LLMs to assess and reason GR retrieved query-document (q-d) pairs, and then distill the reasoning data as transferred knowledge to the GR model. Moreover, we utilize a decision agent as post-processing to extend the GR retrieved documents through retrieval model and select the most relevant ones from multi perspectives as the final generative retrieval result. Extensive offline experiments on real-world datasets and online A/B tests on Fund Search and Insurance Search in Alipay demonstrate our framework's superiority and effectiveness in improving search quality and conversion gains.
Related papers
- Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.
SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.
We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - Large Language Model Can Be a Foundation for Hidden Rationale-Based Retrieval [12.83513794686623]
In this paper, we propose and study a more challenging type of retrieval task, called hidden rationale retrieval.<n>To address such problems, an instruction-tuned Large language model (LLM) with a cross-encoder architecture could be a reasonable choice.<n>We name this retrieval framework by RaHoRe and verify its zero-shot and fine-tuned performance superiority on Emotional Support Conversation (ESC)
arXiv Detail & Related papers (2024-12-21T13:19:15Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - R^2AG: Incorporating Retrieval Information into Retrieval Augmented Generation [11.890598082534577]
Retrieval augmented generation (RAG) has been applied in many scenarios to augment large language models (LLMs) with external documents provided by retrievers.
This paper proposes R$2$AG, a novel enhanced RAG framework that incorporates Retrieval information into Retrieval Augmented Generation.
arXiv Detail & Related papers (2024-06-19T06:19:48Z) - SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG)
Existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries.
We propose Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm.
arXiv Detail & Related papers (2024-06-17T06:48:31Z) - Embedding-Informed Adaptive Retrieval-Augmented Generation of Large Language Models [37.02290559379761]
Retrieval-augmented large language models (LLMs) have been remarkably competent in various NLP tasks.<n>Motivated by this, Adaptive Retrieval-Augmented Generation (ARAG) studies retrieving only when the knowledge asked by the query is absent in the LLM.
arXiv Detail & Related papers (2024-04-04T15:21:22Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR is a RElevance-Aware Retrieval-augmented approach for open-domain question answering (QA)
We develop a novel architecture for LLM-based RAG systems, by incorporating a specially designed assessment module.
Experiments on four open-domain QA tasks show that REAR significantly outperforms previous a number of competitive RAG approaches.
arXiv Detail & Related papers (2024-02-27T13:22:51Z) - Distillation Enhanced Generative Retrieval [96.69326099136289]
Generative retrieval is a promising new paradigm in text retrieval that generates identifier strings of relevant passages as the retrieval target.
In this work, we identify a viable direction to further enhance generative retrieval via distillation and propose a feasible framework, named DGR.
We conduct experiments on four public datasets, and the results indicate that DGR achieves state-of-the-art performance among the generative retrieval methods.
arXiv Detail & Related papers (2024-02-16T15:48:24Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented generation (RAG) relies heavily on relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong.
We propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation.
CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches.
arXiv Detail & Related papers (2024-01-29T04:36:39Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.