論文の概要: Learning Class Prototypes for Unified Sparse Supervised 3D Object Detection
- arxiv url: http://arxiv.org/abs/2503.21099v1
- Date: Thu, 27 Mar 2025 02:37:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:52:49.709040
- Title: Learning Class Prototypes for Unified Sparse Supervised 3D Object Detection
- Title(参考訳): 統一スパース3次元物体検出のためのクラスプロトタイプの学習
- Authors: Yun Zhu, Le Hui, Hang Yang, Jianjun Qian, Jin Xie, Jian Yang,
- Abstract要約: 本研究では,屋内および屋外の両方のシーンを対象としたスパース制御3次元物体検出手法を提案する。
ScanNet V2, SUN RGB-D, KITTIの完全監視検出器と比較して, 約78%, 90%, 96%の性能が得られた。
- 参考スコア(独自算出の注目度): 36.851528695465475
- License:
- Abstract: Both indoor and outdoor scene perceptions are essential for embodied intelligence. However, current sparse supervised 3D object detection methods focus solely on outdoor scenes without considering indoor settings. To this end, we propose a unified sparse supervised 3D object detection method for both indoor and outdoor scenes through learning class prototypes to effectively utilize unlabeled objects. Specifically, we first propose a prototype-based object mining module that converts the unlabeled object mining into a matching problem between class prototypes and unlabeled features. By using optimal transport matching results, we assign prototype labels to high-confidence features, thereby achieving the mining of unlabeled objects. We then present a multi-label cooperative refinement module to effectively recover missed detections through pseudo label quality control and prototype label cooperation. Experiments show that our method achieves state-of-the-art performance under the one object per scene sparse supervised setting across indoor and outdoor datasets. With only one labeled object per scene, our method achieves about 78%, 90%, and 96% performance compared to the fully supervised detector on ScanNet V2, SUN RGB-D, and KITTI, respectively, highlighting the scalability of our method. Code is available at https://github.com/zyrant/CPDet3D.
- Abstract(参考訳): インテリジェンスには屋内と屋外の両方のシーン認識が不可欠である。
しかし,現在のスパース型3次元物体検出法は屋内環境を考慮せずに屋外シーンのみに焦点を絞っている。
そこで本研究では,未ラベルのオブジェクトを効果的に活用するために,クラスプロトタイプの学習を通じて,室内と屋外の両方のシーンを対象とした統一されたスパース3Dオブジェクト検出手法を提案する。
具体的には、まず、未ラベルのオブジェクトマイニングをクラスプロトタイプと未ラベルの特徴の一致問題に変換するプロトタイプベースのオブジェクトマイニングモジュールを提案する。
最適なトランスポートマッチング結果を用いて,プロトタイプラベルを高信頼度特徴に割り当て,未ラベルオブジェクトのマイニングを実現する。
次に、擬似ラベル品質制御とプロトタイプラベル協調により、欠落検出を効果的に回収する多ラベル協調改良モジュールを提案する。
実験により,本手法は屋内および屋外のデータセットにまたがって,シーンごとのスパース・セッティングの1つの対象下での最先端性能を実現することを示す。
ScanNet V2 と SUN RGB-D と KITTI の完全教師付き検出器と比較して約78%,90%,96%の性能を達成した。
コードはhttps://github.com/zyrant/CPDet3Dで入手できる。
関連論文リスト
- SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics [0.7373617024876725]
自律運転では、3Dオブジェクト検出は、経路計画や動き推定を含む下流タスクに対してより正確な情報を提供する。
本稿では,既存のLiDARのみに基づく3Dオブジェクト検出における意味情報の強化を目的としたSeSameを提案する。
KITTIオブジェクト検出ベンチマークにおいて,提案手法の有効性を示す実験を行った。
論文 参考訳(メタデータ) (2024-03-11T08:17:56Z) - Dual-Perspective Knowledge Enrichment for Semi-Supervised 3D Object
Detection [55.210991151015534]
本稿では, DPKE という新しい2次元知識豊か化手法を提案する。
我々のDPKEは、データパースペクティブと機能パースペクティブという2つの観点から、限られたトレーニングデータ、特にラベルなしデータの知識を豊かにしています。
論文 参考訳(メタデータ) (2024-01-10T08:56:07Z) - PatchContrast: Self-Supervised Pre-training for 3D Object Detection [14.603858163158625]
PatchContrastは、3Dオブジェクト検出のための新しい自己教師付きポイントクラウド事前学習フレームワークである。
提案手法は,3つの一般的な3次元検出データセットにおいて,既存の最先端モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-14T07:45:54Z) - Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR
based 3D Object Detection [50.959453059206446]
本稿では,高性能なオフラインLiDARによる3Dオブジェクト検出を実現することを目的とする。
まず、経験豊富な人間のアノテータが、トラック中心の視点でオブジェクトに注釈を付けるのを観察する。
従来のオブジェクト中心の視点ではなく,トラック中心の視点で高性能なオフライン検出器を提案する。
論文 参考訳(メタデータ) (2023-04-24T17:59:05Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - Semi-supervised 3D Object Detection via Adaptive Pseudo-Labeling [18.209409027211404]
3次元物体検出はコンピュータビジョンにおいて重要な課題である。
既存のほとんどのメソッドでは、多くの高品質な3Dアノテーションが必要です。
本研究では,屋外3次元物体検出タスクのための擬似ラベルに基づく新しい半教師付きフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-15T02:58:43Z) - 3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object
Detection [76.42897462051067]
3DIoUMatchは屋内および屋外の場面両方に適当3D目的の検出のための新しい半監視された方法です。
教師と教師の相互学習の枠組みを活用し,ラベル付けされていない列車の情報を擬似ラベルの形で伝達する。
本手法は,ScanNetとSUN-RGBDのベンチマークにおける最先端の手法を,全てのラベル比で有意差で継続的に改善する。
論文 参考訳(メタデータ) (2020-12-08T11:06:26Z) - Move to See Better: Self-Improving Embodied Object Detection [35.461141354989714]
本研究では,テスト環境における物体検出の改善手法を提案する。
エージェントは、多視点データを収集し、2Dおよび3D擬似ラベルを生成し、その検出器を自己監督的に微調整する。
論文 参考訳(メタデータ) (2020-11-30T19:16:51Z) - Unsupervised Object Detection with LiDAR Clues [70.73881791310495]
本稿では,LiDARの手がかりを用いた非教師対象検出のための最初の実用的手法を提案する。
提案手法では,まず3次元点雲に基づく候補オブジェクトセグメントを生成する。
そして、セグメントラベルを割り当て、セグメントラベルネットワークを訓練する反復的なセグメントラベル処理を行う。
ラベル付けプロセスは、長い尾とオープンエンドの分布の問題を軽減するために慎重に設計されている。
論文 参考訳(メタデータ) (2020-11-25T18:59:54Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
具体的には、ラベルのない新しい未知のデータに基づくネットワークの一般化を促進するための、徹底的な摂動スキームを設計する。
我々のSESSは、50%のラベル付きデータを用いて、最先端の完全教師付き手法と比較して、競争性能を達成している。
論文 参考訳(メタデータ) (2019-12-26T08:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。