論文の概要: Unveiling the Power of Uncertainty: A Journey into Bayesian Neural Networks for Stellar dating
- arxiv url: http://arxiv.org/abs/2503.21153v1
- Date: Thu, 27 Mar 2025 04:45:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:51:38.113654
- Title: Unveiling the Power of Uncertainty: A Journey into Bayesian Neural Networks for Stellar dating
- Title(参考訳): 不確かさの力を開く:ステラー年代測定のためのベイズニューラルネットワークへの旅
- Authors: Víctor Tamames-Rodero, Andrés Moya, Roberto Javier López, Luis Manuel Sarro,
- Abstract要約: 本稿では,確率的関係をニューラルネットワークでモデル化した階層型ベイズアーキテクチャを提案する。
我々は、質量、半径、年齢(主ターゲット)などの恒星特性を予測する。
我々のシステムは予測値の潜在的な範囲をカプセル化する分布を生成する。
- 参考スコア(独自算出の注目度): 0.9999629695552196
- License:
- Abstract: Context: Astronomy and astrophysics demand rigorous handling of uncertainties to ensure the credibility of outcomes. The growing integration of artificial intelligence offers a novel avenue to address this necessity. This convergence presents an opportunity to create advanced models capable of quantifying diverse sources of uncertainty and automating complex data relationship exploration. What: We introduce a hierarchical Bayesian architecture whose probabilistic relationships are modeled by neural networks, designed to forecast stellar attributes such as mass, radius, and age (our main target). This architecture handles both observational uncertainties stemming from measurements and epistemic uncertainties inherent in the predictive model itself. As a result, our system generates distributions that encapsulate the potential range of values for our predictions, providing a comprehensive understanding of their variability and robustness. Methods: Our focus is on dating main sequence stars using a technique known as Chemical Clocks, which serves as both our primary astronomical challenge and a model prototype. In this work, we use hierarchical architectures to account for correlations between stellar parameters and optimize information extraction from our dataset. We also employ Bayesian neural networks for their versatility and flexibility in capturing complex data relationships. Results: By integrating our machine learning algorithm into a Bayesian framework, we have successfully propagated errors consistently and managed uncertainty treatment effectively, resulting in predictions characterized by broader uncertainty margins. This approach facilitates more conservative estimates in stellar dating. Our architecture achieves age predictions with a mean absolute error of less than 1 Ga for the stars in the test dataset.
- Abstract(参考訳): 文脈:天文学と天体物理学は、結果の信頼性を確保するために不確実性の厳格な扱いを要求する。
人工知能の統合は、この必要性に対処するための新しい道のりを提供する。
この収束は、様々な不確実性のソースを定量化し、複雑なデータ関係探索を自動化する高度なモデルを作成する機会を提供する。
ここでは,確率的関係をニューラルネットワークでモデル化し,質量,半径,年齢などの恒星特性を予測する階層型ベイズアーキテクチャを提案する。
このアーキテクチャは、測定から生じる観察上の不確実性と、予測モデル自体に固有の疫学的な不確実性の両方を扱う。
その結果,予測値の潜在的な範囲をカプセル化した分布を生成し,その変動性とロバスト性に関する包括的理解を提供する。
方法:我々の焦点は、ケミカル・クロックと呼ばれる技法を使って主系列星の年代を推定することである。
本研究では、階層型アーキテクチャを用いて、恒星パラメータ間の相関を考慮し、データセットから情報抽出を最適化する。
複雑なデータ関係をキャプチャする汎用性と柔軟性のために、ベイジアンニューラルネットワークも使用しています。
結果: 機械学習アルゴリズムをベイズフレームワークに統合することにより, エラーを一貫して伝播し, 不確実性処理を効果的に管理し, より大きな不確実性マージンを特徴とする予測を導出した。
このアプローチは恒星年代測定におけるより保守的な推定を促進する。
我々のアーキテクチャは、テストデータセットの恒星に対して平均絶対誤差が1Ga未満の年齢予測を達成している。
関連論文リスト
- Mixture-of-Experts Graph Transformers for Interpretable Particle Collision Detection [36.56642608984189]
本稿では,グラフトランスフォーマーモデルとMixture-of-Expertレイヤを組み合わせることで,高い予測性能を実現する手法を提案する。
我々は、ATLAS実験からシミュレーションイベントのモデルを評価し、希少な超対称性信号イベントの識別に焦点をあてた。
このアプローチは、高エネルギー物理学に適用された機械学習手法における説明可能性の重要性を浮き彫りにする。
論文 参考訳(メタデータ) (2025-01-06T23:28:19Z) - Back to Bayesics: Uncovering Human Mobility Distributions and Anomalies with an Integrated Statistical and Neural Framework [14.899157568336731]
DeepBayesicは、ベイズ原理とディープニューラルネットワークを統合し、基盤となる分布をモデル化する新しいフレームワークである。
我々は,いくつかのモビリティデータセットに対するアプローチを評価し,最先端の異常検出手法の大幅な改善を実証した。
論文 参考訳(メタデータ) (2024-10-01T19:02:06Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
本稿では,エンコーダのみのトランスフォーマーアーキテクチャのアテンションヘッドにおける意味的意味パターンについて検討する。
注意重みの修正はトレーニングプロセスの促進だけでなく,最適化の安定性の向上にも寄与する。
論文 参考訳(メタデータ) (2024-09-20T07:41:47Z) - Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordancesはアクション、オブジェクト、エフェクト間の関係の基本的な記述である。
本稿では,世界を探究し,その感覚経験から自律的にこれらの余裕を学習するエンボディエージェントの問題にアプローチする。
論文 参考訳(メタデータ) (2024-02-08T22:05:45Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Surprisal Driven $k$-NN for Robust and Interpretable Nonparametric
Learning [1.4293924404819704]
我々は情報理論の観点から、隣り合う従来のアルゴリズムに新たな光を当てた。
単一モデルを用いた分類,回帰,密度推定,異常検出などのタスクに対する頑健で解釈可能なフレームワークを提案する。
我々の研究は、分類と異常検出における最先端の成果を達成することによって、アーキテクチャの汎用性を示す。
論文 参考訳(メタデータ) (2023-11-17T00:35:38Z) - Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation
for Earth System Science Applications [0.32302664881848275]
エビデンシャル・ディープ・ラーニング(Evidential Deep Learning)は、パラメトリック・ディープ・ラーニングを高次分布に拡張する手法である。
本研究では,明らかなニューラルネットワークから得られる不確実性とアンサンブルから得られる不確実性を比較する。
本研究では,従来の手法に匹敵する予測精度を実現するとともに,両方の不確実性源をしっかりと定量化しながら,明らかな深層学習モデルを示す。
論文 参考訳(メタデータ) (2023-09-22T23:04:51Z) - Quantifying uncertainty for deep learning based forecasting and
flow-reconstruction using neural architecture search ensembles [0.8258451067861933]
本稿では,ディープニューラルネットワーク(DNN)の自動検出手法を提案するとともに,アンサンブルに基づく不確実性定量化にも有効であることを示す。
提案手法は,タスクの高パフォーマンスニューラルネットワークアンサンブルを検出するだけでなく,不確実性をシームレスに定量化する。
本研究では, 歴史的データからの予測と, 海面温度のスパースセンサからのフロー再構成という2つの課題に対して, この枠組みの有効性を実証する。
論文 参考訳(メタデータ) (2023-02-20T03:57:06Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Learning Causal Models Online [103.87959747047158]
予測モデルは、予測を行うためにデータの急激な相関に依存することができる。
強い一般化を達成するための一つの解決策は、モデルに因果構造を組み込むことである。
本稿では,突発的特徴を継続的に検出・除去するオンラインアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-12T20:49:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。