論文の概要: Value of risk-contact data from digital contact monitoring apps in infectious disease modeling
- arxiv url: http://arxiv.org/abs/2503.21228v1
- Date: Thu, 27 Mar 2025 07:40:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:53:03.795774
- Title: Value of risk-contact data from digital contact monitoring apps in infectious disease modeling
- Title(参考訳): 感染性疾患モデルにおけるデジタルコンタクトモニタリングアプリからのリスク接触データの価値
- Authors: Martijn H. H. Schoot Uiterkamp, Willian J. van Dijk, Hans Heesterbeek, Remco van der Hofstad, Jessica C. Kiefte-de Jong, Nelly Litvak,
- Abstract要約: 本稿では,デジタルコンタクトモニタリング(DCM)アプリから得られたリスク接触データを,従来のコンパートメンタルトランスミッションモデルに簡単に統合する手法を提案する。
オランダで最近流行した新型コロナウイルス(COVID-19)の流行に対して,健康監視アプリCOVID RADARの自己申告データと,接触追跡アプリCoronaMelderの近接データを用いて,本手法を適用した。
- 参考スコア(独自算出の注目度): 1.53934570513443
- License:
- Abstract: In this paper, we present a simple method to integrate risk-contact data, obtained via digital contact monitoring (DCM) apps, in conventional compartmental transmission models. During the recent COVID-19 pandemic, many such data have been collected for the first time via newly developed DCM apps. However, it is unclear what the added value of these data is, unlike that of traditionally collected data via, e.g., surveys during non-epidemic times. The core idea behind our method is to express the number of infectious individuals as a function of the proportion of contacts that were with infected individuals and use this number as a starting point to initialize the remaining compartments of the model. As an important consequence, using our method, we can estimate key indicators such as the effective reproduction number using only two types of daily aggregated contact information, namely the average number of contacts and the average number of those contacts that were with an infected individual. We apply our method to the recent COVID-19 epidemic in the Netherlands, using self-reported data from the health surveillance app COVID RADAR and proximity-based data from the contact tracing app CoronaMelder. For both data sources, our corresponding estimates of the effective reproduction number agree both in time and magnitude with estimates based on other more detailed data sources such as daily numbers of cases and hospitalizations. This suggests that the use of DCM data in transmission models, regardless of the precise data type and for example via our method, offers a promising alternative for estimating the state of an epidemic, especially when more detailed data are not available.
- Abstract(参考訳): 本稿では,デジタルコンタクトモニタリング(DCM)アプリケーションを通じて得られたリスク接触データを,従来のコンパートメンタルトランスミッションモデルに簡単に統合する手法を提案する。
新型コロナウイルス(COVID-19)のパンデミックで、新たに開発されたDCMアプリを通じて、初めて多くのデータが収集された。
しかしながら、これらのデータの付加価値は、伝統的に収集されたデータと異なり、例えば、非緊急時のサーベイと異なり、不明である。
本手法の背景にある基本的な考え方は,感染した個体と接触する割合の関数として感染した個体数を表現し,この数を出発点としてモデルの残りの区画を初期化することである。
重要な結果として,本手法を用いて,感染した人物と接する接点数の平均と接点数の平均の2種類の接点情報のみを用いて,有効再生数などの重要な指標を推定できる。
オランダで最近流行した新型コロナウイルス(COVID-19)の流行に対して,健康監視アプリCOVID RADARの自己申告データと,接触追跡アプリCoronaMelderの近接データを用いて本手法を適用した。
両データソースについて, 実効再生数の推定値は, 日数や入院率など, その他の詳細なデータソースに基づいて, 時間と大きさの両方で一致している。
このことから,DCMデータを送信モデルに利用することは,正確なデータ型に拘わらず,例えば本手法では,特に詳細なデータが得られない場合に,疫病の状態を推定する上で有望な代替手段となることが示唆された。
関連論文リスト
- Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
ディープニューラルネットワークは、データ中毒攻撃に弱いことが証明されている。
混合データセットから有毒なサンプルを検出することは極めて有益であり、困難である。
UE識別のための反復フィルタリング手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T13:26:13Z) - Leveraging Unlabelled Data in Multiple-Instance Learning Problems for
Improved Detection of Parkinsonian Tremor in Free-Living Conditions [80.88681952022479]
本稿では,半教師付き学習とマルチスタンス学習を組み合わせた新しい手法を提案する。
本研究は,454被験者の非競合データを活用することにより,物体ごとの震動検出において大きな性能向上が達成できることを示す。
論文 参考訳(メタデータ) (2023-04-29T12:25:10Z) - Models for digitally contact-traced epidemics [0.0]
デジタルコンタクトトレースは、従来のコンタクトトレースをスケールアップする自動化ソリューションとして提案されている。
新型コロナウイルスの感染対策に関して, クローズドな条件を導出するためのコンパートメンタルSEIRモデルを提案する。
論文 参考訳(メタデータ) (2022-03-01T16:50:00Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
本稿では,ニューラルネットワークの本質的特性を活用し,生存分析モデルの訓練過程を関連づける。
小さな医療データセットと少数のデータセンターの現実的な設定では、このノイズはモデルを収束させるのが難しくなります。
DPFed-post は,私的フェデレート学習方式に後処理の段階を追加する。
論文 参考訳(メタデータ) (2022-02-08T10:03:24Z) - TsFeX: Contact Tracing Model using Time Series Feature Extraction and
Gradient Boosting [0.0]
本研究は、新型コロナウイルスに感染した他人と接触した可能性がある個人を識別する自動機械学習システムを提案する。
本稿では、感染した人物に近づいたかどうかを効果的に予測する最適解モデルにたどり着く際のアプローチについて述べる。
論文 参考訳(メタデータ) (2021-11-29T11:12:38Z) - Epidemic Management and Control Through Risk-Dependent Individual
Contact Interventions [1.1439420412899566]
テスト、接触追跡、隔離(TTI)は、大規模な実装が困難である疫病管理と制御のアプローチである。
ここでは、接触ネットワーク上でデータ同化(DA)を使用するTTIおよび露出通知アプリのスケーラブルな改善を示す。
論文 参考訳(メタデータ) (2021-09-22T18:39:10Z) - Lung Cancer Risk Estimation with Incomplete Data: A Joint Missing
Imputation Perspective [5.64530854079352]
マルチモーダルデータの連成分布をモデル化することで、欠落データの計算に対処する。
本稿では, PBiGAN を用いた新しい条件付き PBiGAN (C-PBiGAN) 法を提案する。
C-PBiGANは, 肺がんのリスク評価において, 代表的計算法と比較して有意に改善した。
論文 参考訳(メタデータ) (2021-07-25T20:15:16Z) - Medical data wrangling with sequential variational autoencoders [5.9207487081080705]
本稿では,逐次変分オートエンコーダ(vaes)を用いた異種データ型とバースト欠落データを用いた医療データ記録のモデル化を提案する。
GP-VAEモデルより計算複雑性が低く,両指標を用いた場合,Shi-VAEが最高の性能を発揮することを示す。
論文 参考訳(メタデータ) (2021-03-12T10:59:26Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSimは、ウイルス学、病気の進行、社会的接触ネットワーク、移動パターンに基づくエージェントベースのコンパートメンタルシミュレータである。
1)バイナリテスト結果に基づいてバイナリレコメンデーションを割り当てる標準バイナリコンタクトトレース (BCT) と,2) 多様な特徴に基づいてグレードレベルのレコメンデーションを割り当てる特徴ベースコンタクトトレース (FCT) のルールベースの手法である。
論文 参考訳(メタデータ) (2020-10-30T00:47:01Z) - Predicting Infectiousness for Proactive Contact Tracing [75.62186539860787]
大規模デジタル接触追跡は、ウイルスの拡散を最小限に抑えながら、経済と社会活動を再開する潜在的な解決策である。
プライバシ、モビリティ制限、公衆衛生のトレードオフを行う様々なDCT手法が提案されている。
本稿では,個人の感染を積極的に予測するためにスマートフォンに展開可能な方法を開発し,検証する。
論文 参考訳(メタデータ) (2020-10-23T17:06:07Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
我々は,個人が感染するリスクを推定するためにベイズ推定法を開発した。
本稿では,感染防止のための検査・隔離戦略を最適化するために,確率論的リスク推定手法を提案する。
我々のアプローチは、最近接触した個人間の通信のみを必要とする、完全に分散されたアルゴリズムに変換されます。
論文 参考訳(メタデータ) (2020-09-20T12:24:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。