論文の概要: Improving $(α, f)$-Byzantine Resilience in Federated Learning via layerwise aggregation and cosine distance
- arxiv url: http://arxiv.org/abs/2503.21244v1
- Date: Thu, 27 Mar 2025 08:07:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:54:09.620628
- Title: Improving $(α, f)$-Byzantine Resilience in Federated Learning via layerwise aggregation and cosine distance
- Title(参考訳): 階層的アグリゲーションとコサイン距離によるフェデレートラーニングにおける$(α, f)$-ビザンチンレジリエンスの改善
- Authors: Mario García-Márquez, Nuria Rodríguez-Barroso, M. Victoria Luzón, Francisco Herrera,
- Abstract要約: フェデレートラーニング(FL)は、分散機械学習におけるデータプライバシの課題に対する潜在的な解決策である。
FLシステムは、悪意のあるノードが破損したモデル更新に寄与するビザンティン攻撃に弱いままである。
本稿では,高次元設定における規則の堅牢性向上を目的とした新しいアグリゲーション手法であるLayerwise Cosine Aggregationを紹介する。
- 参考スコア(独自算出の注目度): 7.8973037023478785
- License:
- Abstract: The rapid development of artificial intelligence systems has amplified societal concerns regarding their usage, necessitating regulatory frameworks that encompass data privacy. Federated Learning (FL) is posed as potential solution to data privacy challenges in distributed machine learning by enabling collaborative model training {without data sharing}. However, FL systems remain vulnerable to Byzantine attacks, where malicious nodes contribute corrupted model updates. While Byzantine Resilient operators have emerged as a widely adopted robust aggregation algorithm to mitigate these attacks, its efficacy diminishes significantly in high-dimensional parameter spaces, sometimes leading to poor performing models. This paper introduces Layerwise Cosine Aggregation, a novel aggregation scheme designed to enhance robustness of these rules in such high-dimensional settings while preserving computational efficiency. A theoretical analysis is presented, demonstrating the superior robustness of the proposed Layerwise Cosine Aggregation compared to original robust aggregation operators. Empirical evaluation across diverse image classification datasets, under varying data distributions and Byzantine attack scenarios, consistently demonstrates the improved performance of Layerwise Cosine Aggregation, achieving up to a 16% increase in model accuracy.
- Abstract(参考訳): 人工知能システムの急速な発展は、その使用に関する社会的懸念を増幅し、データプライバシを含む規制フレームワークを必要としている。
Federated Learning (FL) は、分散機械学習におけるデータプライバシ問題に対する潜在的な解決策として、コラボレーティブモデルトレーニング {without data sharing} を可能にしている。
しかし、悪意のあるノードが破損したモデル更新に寄与するビザンティン攻撃に対して、FLシステムは依然として脆弱である。
ビザンティン・レジリエント作用素はこれらの攻撃を緩和するために広く採用されているロバスト集約アルゴリズムとして現れてきたが、その有効性は高次元のパラメータ空間において著しく低下し、時には性能の悪いモデルに繋がる。
本稿では,計算効率を保ちながら,このような高次元設定における規則の堅牢性を高めるための新しいアグリゲーション手法であるLayerwise Cosine Aggregationを紹介する。
理論解析を行い、提案したLayerwise Cosine Aggregationが元のロバストアグリゲーション演算子よりも優れたロバスト性を示す。
さまざまな画像分類データセット、さまざまなデータ分散とByzantine攻撃シナリオによる経験的評価は、Layerwise Cosine Aggregationのパフォーマンスの改善を一貫して証明し、モデル精度を最大16%向上させる。
関連論文リスト
- LayerMix: Enhanced Data Augmentation through Fractal Integration for Robust Deep Learning [1.786053901581251]
ディープラーニングモデルは、アウト・オブ・ディストリビューション(OOD)のサンプルに直面すると、一貫したパフォーマンスを維持するのに苦労することが多い。
モデルロバスト性を体系的に強化する革新的なデータ拡張アプローチであるLayerMixを紹介する。
本手法は,ニューラルネットワークの一般化能力を大幅に向上させる意味論的一貫した合成サンプルを生成する。
論文 参考訳(メタデータ) (2025-01-08T22:22:44Z) - Achieving Byzantine-Resilient Federated Learning via Layer-Adaptive Sparsified Model Aggregation [7.200910949076064]
フェデレートラーニング(FL)は、複数のクライアントがローカルデータを共有せずに、協調的にモデルをトレーニングすることを可能にする。
しかし、FLシステムは、悪質なモデルの更新をアップロードすることでモデルのトレーニングプロセスを妨害することを目的とした、よく設計されたByzantine攻撃に対して脆弱である。
本稿では,階層的適応アグリゲーションと事前アグリゲーション・スパリフィケーションを組み合わせたLayer-Adaptive Sparsified Model Aggregation(LASA)手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T19:28:35Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
本稿では,ラベルフリップ攻撃に対して,FL(Federated Learning)システムを構築するための高度なアプローチを提案する。
本稿では,適応的しきい値設定機構と統合されたコンセンサスに基づく検証プロセスを提案する。
以上の結果から,FLシステムのレジリエンスを高め,ラベルフリップ攻撃の顕著な緩和効果が示唆された。
論文 参考訳(メタデータ) (2024-03-05T20:54:56Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNは、クエリ許可を通じてターゲットモデルを複製するための悪行であるモデル盗難攻撃に対して脆弱である。
異なるシナリオに対応するために,3つのモデルステルス攻撃を導入する。
論文 参考訳(メタデータ) (2023-12-18T05:42:31Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
本研究では, 突発的相関を除去し, 安定した予測を行うために, インプリシト・カウンセショナル・データ拡張法を提案する。
画像とテキストのデータセットをカバーする様々なバイアス付き学習シナリオで実験が行われてきた。
論文 参考訳(メタデータ) (2023-04-26T10:36:40Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。