論文の概要: OminiAdapt: Learning Cross-Task Invariance for Robust and Environment-Aware Robotic Manipulation
- arxiv url: http://arxiv.org/abs/2503.21257v1
- Date: Thu, 27 Mar 2025 08:28:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:51:33.128137
- Title: OminiAdapt: Learning Cross-Task Invariance for Robust and Environment-Aware Robotic Manipulation
- Title(参考訳): OminiAdapt:ロバストと環境を考慮したロボットマニピュレーションのためのクロスタスク不変性学習
- Authors: Yongxu Wang, Weiyun Yi, Xinhao Kong, Wanting Li,
- Abstract要約: 本稿では,ヒューマノイドロボットに適した模倣学習アルゴリズムを提案する。
主な課題に焦点をあてて,提案アルゴリズムは環境障害を抑制する。
実験の結果,提案手法は様々なタスクシナリオに対して頑健さとスケーラビリティを示すことがわかった。
- 参考スコア(独自算出の注目度): 1.4719692998274154
- License:
- Abstract: With the rapid development of embodied intelligence, leveraging large-scale human data for high-level imitation learning on humanoid robots has become a focal point of interest in both academia and industry. However, applying humanoid robots to precision operation domains remains challenging due to the complexities they face in perception and control processes, the long-standing physical differences in morphology and actuation mechanisms between humanoid robots and humans, and the lack of task-relevant features obtained from egocentric vision. To address the issue of covariate shift in imitation learning, this paper proposes an imitation learning algorithm tailored for humanoid robots. By focusing on the primary task objectives, filtering out background information, and incorporating channel feature fusion with spatial attention mechanisms, the proposed algorithm suppresses environmental disturbances and utilizes a dynamic weight update strategy to significantly improve the success rate of humanoid robots in accomplishing target tasks. Experimental results demonstrate that the proposed method exhibits robustness and scalability across various typical task scenarios, providing new ideas and approaches for autonomous learning and control in humanoid robots. The project will be open-sourced on GitHub.
- Abstract(参考訳): エンボディード・インテリジェンス(英語版)の急速な発展に伴い、ヒューマノイドロボットの高度な模倣学習に大規模な人的データを活用することが、学術と産業の両方において焦点となっている。
しかしながら、人間型ロボットを精度の高い操作領域に適用することは、知覚と制御過程において直面する複雑さ、人間型ロボットと人間の形態と運動機構の長年の物理的差異、そして自我中心の視覚から得られるタスク関連特徴の欠如により、依然として困難である。
本稿では,模倣学習における共変量シフトの問題に対処するため,ヒューマノイドロボットに適した模倣学習アルゴリズムを提案する。
提案アルゴリズムは,タスクの主目的に集中し,背景情報をフィルタリングし,チャネル特徴融合を空間的注意機構と組み合わせることで,環境障害を抑えるとともに,目標タスク達成時のヒューマノイドロボットの成功率を大幅に向上させるために,動的重量更新戦略を利用する。
実験の結果,提案手法は様々なタスクシナリオにまたがる堅牢性とスケーラビリティを示し,ヒューマノイドロボットにおける自律学習と制御のための新しいアイデアとアプローチを提供する。
プロジェクトはGitHubでオープンソース化される予定だ。
関連論文リスト
- Towards Conscious Service Robots [21.66931637743555]
現実世界のロボティクスは、可変性、高次元状態空間、非線形依存、部分観測可能性といった課題に直面している。
現在の機械学習モデルとは異なり、人間は体系的な一般化とメタ認知を可能にする認知アーキテクチャのために、変化や新しいタスクに素早く適応する。
次世代のサービスロボットは、新しい状況に対処し、リスクを避け、エラーを軽減するために自分自身を監視する。
論文 参考訳(メタデータ) (2025-01-25T12:32:52Z) - Human-Humanoid Robots Cross-Embodiment Behavior-Skill Transfer Using Decomposed Adversarial Learning from Demonstration [9.42179962375058]
本稿では,デジタル人間モデルを共通プロトタイプとして使用することにより,データのボトルネックを低減するための転送可能なフレームワークを提案する。
このモデルは、人間による実演から、敵対的な模倣を通して行動プリミティブを学習し、複雑なロボット構造を機能的な構成要素に分解する。
本フレームワークは,多種多様な構成のヒューマノイドロボット5体を用いて検証した。
論文 参考訳(メタデータ) (2024-12-19T18:41:45Z) - Mitigating the Human-Robot Domain Discrepancy in Visual Pre-training for Robotic Manipulation [16.809190349155525]
そこで本研究では,容易に利用可能な人間ロボットのビデオデータを利用して,ドメインギャップを埋める新しい適応パラダイムを提案する。
提案手法では,人間とロボットのビデオのセマンティクスを整列させるために,人間ロボットのアライメント損失を用いて,事前学習したモデルをパラメータ効率よくロボット領域に適応させる。
論文 参考訳(メタデータ) (2024-06-20T11:57:46Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
そこで本研究では,人型ロボットが器用な手を備えた,高次元シミュレーション型ロボット学習ベンチマークHumanoidBenchを提案する。
その結果,現在最先端の強化学習アルゴリズムがほとんどのタスクに支障をきたすのに対して,階層的学習アプローチはロバストな低レベルポリシーに支えられた場合,優れた性能を達成できることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:45:44Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
視覚に基づく人間ロボットハンドオーバの制御ポリシーを学習する最初のフレームワークを提案する。
シミュレーションベンチマーク,sim-to-sim転送,sim-to-real転送において,ベースラインよりも大きな性能向上を示した。
論文 参考訳(メタデータ) (2023-03-30T17:58:36Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。