論文の概要: Towards Conscious Service Robots
- arxiv url: http://arxiv.org/abs/2501.15198v1
- Date: Sat, 25 Jan 2025 12:32:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:55:09.099637
- Title: Towards Conscious Service Robots
- Title(参考訳): 意識型サービスロボットを目指して
- Authors: Sven Behnke,
- Abstract要約: 現実世界のロボティクスは、可変性、高次元状態空間、非線形依存、部分観測可能性といった課題に直面している。
現在の機械学習モデルとは異なり、人間は体系的な一般化とメタ認知を可能にする認知アーキテクチャのために、変化や新しいタスクに素早く適応する。
次世代のサービスロボットは、新しい状況に対処し、リスクを避け、エラーを軽減するために自分自身を監視する。
- 参考スコア(独自算出の注目度): 21.66931637743555
- License:
- Abstract: Deep learning's success in perception, natural language processing, etc. inspires hopes for advancements in autonomous robotics. However, real-world robotics face challenges like variability, high-dimensional state spaces, non-linear dependencies, and partial observability. A key issue is non-stationarity of robots, environments, and tasks, leading to performance drops with out-of-distribution data. Unlike current machine learning models, humans adapt quickly to changes and new tasks due to a cognitive architecture that enables systematic generalization and meta-cognition. Human brain's System 1 handles routine tasks unconsciously, while System 2 manages complex tasks consciously, facilitating flexible problem-solving and self-monitoring. For robots to achieve human-like learning and reasoning, they need to integrate causal models, working memory, planning, and metacognitive processing. By incorporating human cognition insights, the next generation of service robots will handle novel situations and monitor themselves to avoid risks and mitigate errors.
- Abstract(参考訳): ディープラーニングの成功、自然言語処理などによって、自律ロボット工学の進歩が期待されている。
しかし、現実世界のロボティクスは、可変性、高次元状態空間、非線形依存、部分観測可能性といった課題に直面している。
重要な問題は、ロボット、環境、タスクの非定常性であり、アウト・オブ・ディストリビューションデータによるパフォーマンス低下につながる。
現在の機械学習モデルとは異なり、人間は体系的な一般化とメタ認知を可能にする認知アーキテクチャのために、変化や新しいタスクに素早く適応する。
人間の脳のシステム1は無意識でルーチンタスクを処理し、システム2は複雑なタスクを意識的に管理し、柔軟な問題解決と自己監視を容易にする。
ロボットが人間のような学習と推論を達成するためには、因果モデル、作業記憶、計画、メタ認知処理を統合する必要がある。
人間の認識の洞察を取り入れることで、次世代のサービスロボットは、新しい状況を処理し、リスクを避け、エラーを軽減するために自分自身を監視する。
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
脚のついたロボットは、様々な環境をナビゲートし、幅広い障害を克服することができる。
現在の学習手法は、人間の監督を伴わずに、予期せぬ状況の長い尾への一般化に苦慮することが多い。
本稿では,VLM-Predictive Control (VLM-PC) というシステムを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:00:30Z) - Growing from Exploration: A self-exploring framework for robots based on
foundation models [13.250831101705694]
我々は、ロボットが人間の介入なしに自律的に探索し学習することを可能にするGExpというフレームワークを提案する。
幼児が世界と対話する方法に触発されて、GExpはロボットに、一連の自己生成タスクで環境を理解し、探索するように促す。
論文 参考訳(メタデータ) (2024-01-24T14:04:08Z) - Exploring the effects of robotic design on learning and neural control [0.0]
論文は神経制御装置ではなく ロボット体の開発に焦点を当てています
私は、マルチタスク設定でニューラルネットワークが直面する現在の落とし穴の多くを克服できるように、ロボットを設計できることを発見しました。
論文 参考訳(メタデータ) (2023-06-06T15:17:34Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
我々は世界モデルと予測符号化の2つの概念に焦点を当てる。
神経科学において、予測符号化は、脳がその入力を継続的に予測し、その環境における自身のダイナミクスと制御行動のモデル化に適応するように提案する。
論文 参考訳(メタデータ) (2023-01-14T06:38:14Z) - Neuroscience-inspired perception-action in robotics: applying active
inference for state estimation, control and self-perception [2.1067139116005595]
神経科学の発見が、ロボット工学における現在の推定と制御アルゴリズムを改善する機会をいかに開放するかについて議論する。
本稿では,実体プラットフォーム上でのこのような計算モデルの開発から得られた実験と教訓を要約する。
論文 参考訳(メタデータ) (2021-05-10T10:59:38Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - A Survey of Behavior Learning Applications in Robotics -- State of the Art and Perspectives [44.45953630612019]
最近の多くの領域での機械学習の成功は圧倒的に多い。
実際のロボットで学んだり使ったりした行動について、幅広い概要を述べます。
論文 参考訳(メタデータ) (2019-06-05T07:54:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。