DATA-WA: Demand-based Adaptive Task Assignment with Dynamic Worker Availability Windows
- URL: http://arxiv.org/abs/2503.21458v1
- Date: Thu, 27 Mar 2025 12:46:12 GMT
- Title: DATA-WA: Demand-based Adaptive Task Assignment with Dynamic Worker Availability Windows
- Authors: Jinwen Chen, Jiannan Guo, Dazhuo Qiu, Yawen Li, Guanhua Ye, Yan Zhao, Kai Zheng,
- Abstract summary: spatial crowdsourcing involves assigning location-based tasks to mobile workers.<n>Most existing research focuses on task assignment at the current moment.<n>We introduce an adaptive task assignment problem, which aims to maximize the number of assigned tasks.
- Score: 10.809150523812255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of mobile networks and the widespread use of mobile devices, spatial crowdsourcing, which involves assigning location-based tasks to mobile workers, has gained significant attention. However, most existing research focuses on task assignment at the current moment, overlooking the fluctuating demand and supply between tasks and workers over time. To address this issue, we introduce an adaptive task assignment problem, which aims to maximize the number of assigned tasks by dynamically adjusting task assignments in response to changing demand and supply. We develop a spatial crowdsourcing framework, namely demand-based adaptive task assignment with dynamic worker availability windows, which consists of two components including task demand prediction and task assignment. In the first component, we construct a graph adjacency matrix representing the demand dependency relationships in different regions and employ a multivariate time series learning approach to predict future task demands. In the task assignment component, we adjust tasks to workers based on these predictions, worker availability windows, and the current task assignments, where each worker has an availability window that indicates the time periods they are available for task assignments. To reduce the search space of task assignments and be efficient, we propose a worker dependency separation approach based on graph partition and a task value function with reinforcement learning. Experiments on real data demonstrate that our proposals are both effective and efficient.
Related papers
- Instruction-Driven Fusion of Infrared-Visible Images: Tailoring for Diverse Downstream Tasks [9.415977819944246]
The primary value of infrared and visible image fusion technology lies in applying the fusion results to downstream tasks.
Existing methods face challenges such as increased training complexity and significantly compromised performance of individual tasks.
We propose Task-Oriented Adaptive Regulation (T-OAR), an adaptive mechanism specifically designed for multi-task environments.
arXiv Detail & Related papers (2024-11-14T12:02:01Z) - Prompt-Based Spatio-Temporal Graph Transfer Learning [22.855189872649376]
We propose a prompt-based framework capable of adapting to multi-diverse tasks in a data-scarce domain.
We employ learnable prompts to achieve domain and task transfer in a two-stage pipeline.
Our experiments demonstrate that STGP outperforms state-of-the-art baselines in three tasks-forecasting, kriging, and extrapolation-achieving an improvement of up to 10.7%.
arXiv Detail & Related papers (2024-05-21T02:06:40Z) - Task-Driven Exploration: Decoupling and Inter-Task Feedback for Joint Moment Retrieval and Highlight Detection [7.864892339833315]
We propose a novel task-driven top-down framework for joint moment retrieval and highlight detection.
The framework introduces a task-decoupled unit to capture task-specific and common representations.
Comprehensive experiments and in-depth ablation studies on QVHighlights, TVSum, and Charades-STA datasets corroborate the effectiveness and flexibility of the proposed framework.
arXiv Detail & Related papers (2024-04-14T14:06:42Z) - Active Instruction Tuning: Improving Cross-Task Generalization by
Training on Prompt Sensitive Tasks [101.40633115037983]
Instruction tuning (IT) achieves impressive zero-shot generalization results by training large language models (LLMs) on a massive amount of diverse tasks with instructions.
How to select new tasks to improve the performance and generalizability of IT models remains an open question.
We propose active instruction tuning based on prompt uncertainty, a novel framework to identify informative tasks, and then actively tune the models on the selected tasks.
arXiv Detail & Related papers (2023-11-01T04:40:05Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
Existing studies show that multi-task learning with large-scale supervised tasks suffers from negative effects across tasks.
We propose a task prefix guided multi-task pre-training framework to explore the relationships among tasks.
Our model can not only serve as the strong foundation backbone for a wide range of tasks but also be feasible as a probing tool for analyzing task relationships.
arXiv Detail & Related papers (2022-10-12T15:02:04Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
We aim to solve multi-task learning through the lens of sequence-conditioning and weighted sampling.
We propose a new suite of benchmark aimed at compositional tasks, MultiRavens, which allows defining custom task combinations.
Second, we propose a vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned Transporter Networks with sequence-conditioning and weighted sampling.
arXiv Detail & Related papers (2021-09-15T21:19:11Z) - Efficiently Identifying Task Groupings for Multi-Task Learning [55.80489920205404]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We suggest an approach to select which tasks should train together in multi-task learning models.
Our method determines task groupings in a single training run by co-training all tasks together and quantifying the effect to which one task's gradient would affect another task's loss.
arXiv Detail & Related papers (2021-09-10T02:01:43Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
We consider a multi-task environment for dense prediction tasks, represented by a common backbone and independent task-specific heads.
We explore various attention-based contexts, such as global and local, in the multi-task setting.
We propose an Adaptive Task-Relational Context module, which samples the pool of all available contexts for each task pair.
arXiv Detail & Related papers (2021-04-28T16:45:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.