Multi-Agent Collaboration Mechanisms: A Survey of LLMs
- URL: http://arxiv.org/abs/2501.06322v1
- Date: Fri, 10 Jan 2025 19:56:50 GMT
- Title: Multi-Agent Collaboration Mechanisms: A Survey of LLMs
- Authors: Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O'Sullivan, Hoang D. Nguyen,
- Abstract summary: Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively.
This work provides an extensive survey of the collaborative aspect of MASs and introduces a framework to guide future research.
- Score: 6.545098975181273
- License:
- Abstract: With recent advances in Large Language Models (LLMs), Agentic AI has become phenomenal in real-world applications, moving toward multiple LLM-based agents to perceive, learn, reason, and act collaboratively. These LLM-based Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively at scale, transitioning from isolated models to collaboration-centric approaches. This work provides an extensive survey of the collaborative aspect of MASs and introduces an extensible framework to guide future research. Our framework characterizes collaboration mechanisms based on key dimensions: actors (agents involved), types (e.g., cooperation, competition, or coopetition), structures (e.g., peer-to-peer, centralized, or distributed), strategies (e.g., role-based or model-based), and coordination protocols. Through a review of existing methodologies, our findings serve as a foundation for demystifying and advancing LLM-based MASs toward more intelligent and collaborative solutions for complex, real-world use cases. In addition, various applications of MASs across diverse domains, including 5G/6G networks, Industry 5.0, question answering, and social and cultural settings, are also investigated, demonstrating their wider adoption and broader impacts. Finally, we identify key lessons learned, open challenges, and potential research directions of MASs towards artificial collective intelligence.
Related papers
- Beyond Self-Talk: A Communication-Centric Survey of LLM-Based Multi-Agent Systems [11.522282769053817]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in reasoning, planning, and decision-making.
Researchers have begun incorporating LLMs into multi-agent systems to tackle tasks beyond the scope of single-agent setups.
This survey serves as a catalyst for further innovation, fostering more robust, scalable, and intelligent multi-agent systems.
arXiv Detail & Related papers (2025-02-20T07:18:34Z) - When One LLM Drools, Multi-LLM Collaboration Rules [98.71562711695991]
We argue for multi-LLM collaboration to better represent the extensive diversity of data, skills, and people.
We organize existing multi-LLM collaboration methods into a hierarchy, based on the level of access and information exchange.
We envision multi-LLM collaboration as an essential path toward compositional intelligence and collaborative AI development.
arXiv Detail & Related papers (2025-02-06T21:13:44Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
We present a first step toward "Multi-agent LLM training" (MALT) on reasoning problems.
Our approach employs a sequential multi-agent setup with heterogeneous LLMs assigned specialized roles.
We evaluate our approach across MATH, GSM8k, and CQA, where MALT on Llama 3.1 8B models achieves relative improvements of 14.14%, 7.12%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - Organizing a Society of Language Models: Structures and Mechanisms for Enhanced Collective Intelligence [0.0]
This paper introduces a transformative approach by organizing Large Language Models into community-based structures.
We investigate different organizational models-hierarchical, flat, dynamic, and federated-each presenting unique benefits and challenges for collaborative AI systems.
The implementation of such communities holds substantial promise for improve problem-solving capabilities in AI.
arXiv Detail & Related papers (2024-05-06T20:15:45Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - A Review of Cooperation in Multi-agent Learning [5.334450724000142]
Cooperation in multi-agent learning (MAL) is a topic at the intersection of numerous disciplines.
This paper provides an overview of the fundamental concepts, problem settings and algorithms of multi-agent learning.
arXiv Detail & Related papers (2023-12-08T16:42:15Z) - Multi-Agent Consensus Seeking via Large Language Models [6.336670103502898]
Multi-agent systems driven by large language models (LLMs) have shown promising abilities for solving complex tasks in a collaborative manner.
This work considers a fundamental problem in multi-agent collaboration: consensus seeking.
arXiv Detail & Related papers (2023-10-31T03:37:11Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
This paper probes the collaboration mechanisms among contemporary NLP systems by practical experiments with theoretical insights.
We fabricate four unique societies' comprised of LLM agents, where each agent is characterized by a specific trait' (easy-going or overconfident) and engages in collaboration with a distinct thinking pattern' (debate or reflection)
Our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity and consensus reaching, mirroring social psychology theories.
arXiv Detail & Related papers (2023-10-03T15:05:52Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.