Unveiling Latent Information in Transaction Hashes: Hypergraph Learning for Ethereum Ponzi Scheme Detection
- URL: http://arxiv.org/abs/2503.21463v1
- Date: Thu, 27 Mar 2025 12:52:47 GMT
- Title: Unveiling Latent Information in Transaction Hashes: Hypergraph Learning for Ethereum Ponzi Scheme Detection
- Authors: Junhao Wu, Yixin Yang, Chengxiang Jin, Silu Mu, Xiaolei Qian, Jiajun Zhou, Shanqing Yu, Qi Xuan,
- Abstract summary: Existing fraud detection methods typically model transactions as graphs.<n>We propose a hypergraph modeling method for the Ponzi scheme detection method in which transactions are treated as hyperedges.<n>We show that the hyper-homo graph detection channel achieves significant performance improvements, demonstrating the superiority of hypergraph in Ponzi scheme detection.
- Score: 4.254242474314128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the widespread adoption of Ethereum, financial frauds such as Ponzi schemes have become increasingly rampant in the blockchain ecosystem, posing significant threats to the security of account assets. Existing Ethereum fraud detection methods typically model account transactions as graphs, but this approach primarily focuses on binary transactional relationships between accounts, failing to adequately capture the complex multi-party interaction patterns inherent in Ethereum. To address this, we propose a hypergraph modeling method for the Ponzi scheme detection method in Ethereum, called HyperDet. Specifically, we treat transaction hashes as hyperedges that connect all the relevant accounts involved in a transaction. Additionally, we design a two-step hypergraph sampling strategy to significantly reduce computational complexity. Furthermore, we introduce a dual-channel detection module, including the hypergraph detection channel and the hyper-homo graph detection channel, to be compatible with existing detection methods. Experimental results show that, compared to traditional homogeneous graph-based methods, the hyper-homo graph detection channel achieves significant performance improvements, demonstrating the superiority of hypergraph in Ponzi scheme detection. This research offers innovations for modeling complex relationships in blockchain data.
Related papers
- Facilitating Feature and Topology Lightweighting: An Ethereum Transaction Graph Compression Method for Malicious Account Detection [3.877894934465948]
Bitcoin has become one of the primary global platforms for cryptocurrency, playing an important role in promoting the diversification of the financial ecosystem.
Previous regulatory methods usually detect malicious accounts through feature engineering or large-scale transaction graph mining.
We propose an Transaction Graph Compression method named TGC4Eth, which assists malicious detection by lightweighting both features and topology of the transaction graph.
arXiv Detail & Related papers (2024-05-14T02:21:20Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Time-aware Metapath Feature Augmentation for Ponzi Detection in Ethereum [5.934595786654019]
Ponzi schemes and phishing scams severely endanger decentralized finance.
Existing graph-based abnormal behavior detection methods on blockchain usually focus on constructing homogeneous transaction graphs.
We introduce Time-aware Metapath Feature Augmentation (TMFAug) as a plug-and-play module to capture the real metapath-based transaction patterns.
arXiv Detail & Related papers (2022-10-30T15:31:19Z) - TTAGN: Temporal Transaction Aggregation Graph Network for Ethereum
Phishing Scams Detection [11.20384152151594]
Existing phishing scams detection technology mostly uses machine learning or network representation learning to mine the key information from the transaction network to identify phishing addresses.
We propose a Temporal Transaction Aggregation Graph Network (TTAGN) to enhance phishing detection performance.
Our TTAGN (92.8% AUC, and 81.6% F1score) outperforms the state-of-the-art methods, and the effectiveness of temporal edges representation and edge2node module is also demonstrated.
arXiv Detail & Related papers (2022-04-28T12:17:00Z) - Blockchain Phishing Scam Detection via Multi-channel Graph
Classification [1.6980621769406918]
Phishing scam detection methods will protect possible victims and build a healthier blockchain ecosystem.
We defined the transaction pattern graphs for users and transformed the phishing scam detection into a graph classification task.
The proposed multi-channel graph classification model (MCGC) is more able to detect potential phishing by extracting the transaction pattern features of the target users.
arXiv Detail & Related papers (2021-08-19T02:59:55Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - Temporal-Amount Snapshot MultiGraph for Ethereum Transaction Tracking [5.579169055801065]
We study the problem of transaction tracking via link prediction, which provides a deeper understanding of transactions from a network perspective.
Specifically, we introduce an embedding based link prediction framework that is composed of temporal-amount snapshot multigraph (TASMG) and present temporal-amount walk (TAW)
By taking the realistic rules and features of transaction networks into consideration, we propose TASMG to model transaction records as a temporal-amount network and then present TAW to effectively embed accounts via their transaction records.
arXiv Detail & Related papers (2021-02-16T08:21:16Z) - Heterogeneous Graph Neural Networks for Malicious Account Detection [64.0046412312209]
We present GEM, the first heterogeneous graph neural network approach for detecting malicious accounts.
We learn discriminative embeddings from heterogeneous account-device graphs based on two fundamental weaknesses of attackers, i.e. device aggregation and activity aggregation.
Experiments show that our approaches consistently perform promising results compared with competitive methods over time.
arXiv Detail & Related papers (2020-02-27T18:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.