論文の概要: Fine-Grained Behavior and Lane Constraints Guided Trajectory Prediction Method
- arxiv url: http://arxiv.org/abs/2503.21477v1
- Date: Thu, 27 Mar 2025 13:06:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:52:29.242045
- Title: Fine-Grained Behavior and Lane Constraints Guided Trajectory Prediction Method
- Title(参考訳): 軌道予測法による微粒化挙動と車線制約
- Authors: Wenyi Xiong, Jian Chen, Ziheng Qi,
- Abstract要約: 本稿では,行動意図認識と車線制約モデリングを統合した新しいデュアルストリームアーキテクチャBLNetを提案する。
我々のネットワークは、既存の直接回帰とゴールベースアルゴリズムよりも大きな性能向上を示す。
- 参考スコア(独自算出の注目度): 3.303114252531234
- License:
- Abstract: Trajectory prediction, as a critical component of autonomous driving systems, has attracted the attention of many researchers. Existing prediction algorithms focus on extracting more detailed scene features or selecting more reasonable trajectory destinations. However, in the face of dynamic and evolving future movements of the target vehicle, these algorithms cannot provide a fine-grained and continuous description of future behaviors and lane constraints, which degrades the prediction accuracy. To address this challenge, we present BLNet, a novel dualstream architecture that synergistically integrates behavioral intention recognition and lane constraint modeling through parallel attention mechanisms. The framework generates fine-grained behavior state queries (capturing spatial-temporal movement patterns) and lane queries (encoding lane topology constraints), supervised by two auxiliary losses, respectively. Subsequently, a two-stage decoder first produces trajectory proposals, then performs point-level refinement by jointly incorporating both the continuity of passed lanes and future motion features. Extensive experiments on two large datasets, nuScenes and Argoverse, show that our network exhibits significant performance gains over existing direct regression and goal-based algorithms.
- Abstract(参考訳): 自律走行システムの重要な構成要素である軌道予測は、多くの研究者の注目を集めている。
既存の予測アルゴリズムは、より詳細なシーン特徴の抽出や、より合理的な目的地の選択に重点を置いている。
しかし、目標車両の動的かつ進化する将来の動きに直面して、これらのアルゴリズムは将来の挙動と車線制約のきめ細かな連続的な記述を与えることができず、予測精度を低下させる。
この課題に対処するために,並列注意機構による行動意図認識と車線制約モデリングを相乗的に統合する,新しいデュアルストリームアーキテクチャBLNetを提案する。
このフレームワークは、それぞれ2つの補助的損失によって監督される、きめ細かい動作状態クエリ(時空間運動パターンをキャプチャする)とレーンクエリ(レーントポロジー制約を符号化する)を生成する。
その後、2段デコーダがまず軌道提案を行い、パスレーンの連続性と将来の動作特徴を両立させて点レベル改善を行う。
nuScenesとArgoverseの2つの大きなデータセットに対する大規模な実験は、我々のネットワークが既存の直接回帰とゴールベースアルゴリズムよりも大きなパフォーマンス向上を示したことを示している。
関連論文リスト
- TrajFlow: A Generative Framework for Occupancy Density Estimation Using Normalizing Flows [0.0]
交通システムや自動運転車では、インテリジェントエージェントは交通参加者の将来の動きを理解する必要がある。
本稿では,交通参加者の占有密度を推定する生成フレームワークであるTrajFlowを提案する。
論文 参考訳(メタデータ) (2025-01-24T06:09:09Z) - StreamMOTP: Streaming and Unified Framework for Joint 3D Multi-Object Tracking and Trajectory Prediction [22.29257945966914]
我々は3次元多目的追跡・軌道予測(StreamMOTP)のためのストリーミング統合フレームワークを提案する。
ストリーミング方式でモデルを構築し、メモリバンクを利用して、追跡対象の長期潜伏機能をより効果的に保存し、活用する。
また,予測トラジェクタの品質と一貫性を2ストリーム予測器で改善する。
論文 参考訳(メタデータ) (2024-06-28T11:35:35Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
軌道予測は、自律運転やロボット工学などの応用における歩行者運動を理解する上で重要な役割を担っている。
現在の軌道予測モデルは、視覚的モダリティからの長い、完全な、正確に観察されたシーケンスに依存する。
本稿では,物体の障害物や視界外を,完全に視認できる軌跡を持つものと同等に扱う新しいアプローチであるLTrajDiffを提案する。
論文 参考訳(メタデータ) (2023-10-09T20:32:49Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Motion-Scenario Decoupling for Rat-Aware Video Position Prediction:
Strategy and Benchmark [49.58762201363483]
本研究では,個人や環境の影響要因を考慮し,生物ロボットの動き予測データセットであるRatPoseを紹介する。
本稿では,シナリオ指向とモーション指向を効果的に分離するDual-stream Motion-Scenario Decouplingフレームワークを提案する。
難易度が異なるタスクに対して,提案したtextitDMSD フレームワークの大幅な性能向上を示す。
論文 参考訳(メタデータ) (2023-05-17T14:14:31Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - TAE: A Semi-supervised Controllable Behavior-aware Trajectory Generator
and Predictor [3.6955256596550137]
軌道生成と予測は、知的車両のプランナー評価と意思決定において重要な役割を果たす。
本稿では,ドライバの動作を明示的にモデル化する行動認識型トラジェクトリ・オートエンコーダ(TAE)を提案する。
我々のモデルは、統一アーキテクチャにおける軌道生成と予測に対処し、両方のタスクに利益をもたらす。
論文 参考訳(メタデータ) (2022-03-02T17:37:44Z) - Trajectory Prediction with Graph-based Dual-scale Context Fusion [43.51107329748957]
本稿では,Dual Scale Predictorというグラフベースの軌道予測ネットワークを提案する。
静的および動的駆動コンテキストを階層的にエンコードする。
提案したデュアルスケールコンテキスト融合ネットワークにより、DSPは正確で人間らしいマルチモーダル軌道を生成することができる。
論文 参考訳(メタデータ) (2021-11-02T13:42:16Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - Improving Movement Predictions of Traffic Actors in Bird's-Eye View
Models using GANs and Differentiable Trajectory Rasterization [12.652210024012374]
自動運転パズルの最も重要なピースの1つは、周囲の交通機関の将来の動きを予測するタスクである。
一方はトップダウンのシーン化と他方はGAN(Generative Adrial Networks)に基づく手法が特に成功したことが示されている。
本稿では,これら2つの方向に基づいて,Aversa-based conditional GANアーキテクチャを提案する。
提案手法を実世界の大規模データセット上で評価し,最先端のGANベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-04-14T00:41:17Z) - Dynamic Inference: A New Approach Toward Efficient Video Action
Recognition [69.9658249941149]
ビデオにおけるアクション認識は近年大きな成功を収めているが、膨大な計算コストのために依然として難しい課題である。
本稿では,異なるビデオの識別可能性の変動を利用して,推論効率を向上させるための一般的な動的推論手法を提案する。
論文 参考訳(メタデータ) (2020-02-09T11:09:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。