論文の概要: Invert2Restore: Zero-Shot Degradation-Blind Image Restoration
- arxiv url: http://arxiv.org/abs/2503.21486v1
- Date: Thu, 27 Mar 2025 13:22:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:52:28.130375
- Title: Invert2Restore: Zero-Shot Degradation-Blind Image Restoration
- Title(参考訳): Invert2Restore:ゼロショット劣化ブラインド画像復元
- Authors: Hamadi Chihaoui, Paolo Favaro,
- Abstract要約: Invert2Restoreはゼロショットでトレーニング不要なメソッドで、完全に盲目と部分的に盲目の両方で動作する。
様々な種類の画像劣化をうまく一般化する。
Invert2Restoreは複数の画像復元タスクに対して実験的に検証する。
- 参考スコア(独自算出の注目度): 19.263005158979567
- License:
- Abstract: Two of the main challenges of image restoration in real-world scenarios are the accurate characterization of an image prior and the precise modeling of the image degradation operator. Pre-trained diffusion models have been very successfully used as image priors in zero-shot image restoration methods. However, how to best handle the degradation operator is still an open problem. In real-world data, methods that rely on specific parametric assumptions about the degradation model often face limitations in their applicability. To address this, we introduce Invert2Restore, a zero-shot, training-free method that operates in both fully blind and partially blind settings -- requiring no prior knowledge of the degradation model or only partial knowledge of its parametric form without known parameters. Despite this, Invert2Restore achieves high-fidelity results and generalizes well across various types of image degradation. It leverages a pre-trained diffusion model as a deterministic mapping between normal samples and undistorted image samples. The key insight is that the input noise mapped by a diffusion model to a degraded image lies in a low-probability density region of the standard normal distribution. Thus, we can restore the degraded image by carefully guiding its input noise toward a higher-density region. We experimentally validate Invert2Restore across several image restoration tasks, demonstrating that it achieves state-of-the-art performance in scenarios where the degradation operator is either unknown or partially known.
- Abstract(参考訳): 実世界のシナリオにおける画像復元の主な課題の2つは、画像の正確なキャラクタリゼーションと、画像劣化演算子の正確なモデリングである。
事前訓練された拡散モデルはゼロショット画像復元法において画像先行として非常にうまく利用されてきた。
しかし、分解演算子をどう扱えばよいかはまだ未解決の問題である。
実世界のデータでは、分解モデルに関する特定のパラメトリック仮定に依存するメソッドは、しばしば適用可能性の制限に直面します。
これを解決するために、ゼロショットでトレーニング不要なInvert2Restoreを紹介します。これは、完全に盲目と部分的に盲目の両方で動作します。
これにもかかわらず、Invert2Restoreは高忠実度の結果を達成し、様々な種類の画像劣化をうまく一般化する。
これは、通常のサンプルと歪まない画像サンプルの間の決定論的マッピングとして、事前訓練された拡散モデルを利用する。
鍵となる洞察は、拡散モデルによって分解された画像にマッピングされた入力ノイズが、標準正規分布の低確率密度領域にあることである。
これにより、入力ノイズを高密度領域に向けて慎重に誘導することで劣化画像の復元が可能となる。
Invert2Restoreを複数の画像復元タスクにわたって実験的に検証し、劣化演算子が未知あるいは部分的に知られている場合において、最先端の性能を達成することを示す。
関連論文リスト
- Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
拡散モデルは、大規模な生成画像モデルの分野を支配してきた。
本研究では,大規模な事前学習拡散モデルにおける高速拘束サンプリングのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-24T14:52:38Z) - Towards Unsupervised Blind Face Restoration using Diffusion Prior [12.69610609088771]
ブラインド顔復元法は、教師付き学習による大規模合成データセットの訓練において、顕著な性能を示した。
これらのデータセットは、手作りの画像分解パイプラインで、低品質の顔イメージをシミュレートすることによって生成されることが多い。
本稿では, 入力画像の集合のみを用いて, 劣化が不明で, 真理の目標がない場合にのみ, 復元モデルの微調整を行うことにより, この問題に対処する。
我々の最良のモデルは、合成と実世界の両方のデータセットの最先端の結果も達成します。
論文 参考訳(メタデータ) (2024-10-06T20:38:14Z) - Generalizing to Out-of-Sample Degradations via Model Reprogramming [29.56470202794348]
アウト・オブ・サンプル修復(OSR)タスクは、アウト・オブ・サンプル劣化を処理可能な復元モデルを開発することを目的としている。
本稿では,量子力学と波動関数によるサンプル外劣化を変換するモデル再プログラミングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-09T11:56:26Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
画像超解像(SR)は,低分解能(LR)から高分解能(HR)へのマッピングを,一対のHR-LRトレーニング画像を用いて学習することを目的としている。
SRTTAと呼ばれるSRの効率的なテスト時間適応フレームワークを提案し、SRモデルを異なる/未知の劣化型でテストドメインに迅速に適応させることができる。
論文 参考訳(メタデータ) (2023-10-29T13:58:57Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
ブラインド顔復元は通常、トレーニングのための事前定義された劣化モデルで劣化した低品質データを合成する。
トレーニングデータに現実のケースをカバーするために、あらゆる種類の劣化を含めることは、高価で実現不可能である。
本稿では、まず、劣化した画像を粗いが劣化不変な予測に変換し、次に、粗い予測を高品質な画像に復元するために拡張モジュールを使用するロバスト劣化再帰法(DR2)を提案する。
論文 参考訳(メタデータ) (2023-03-13T06:05:18Z) - Invertible Rescaling Network and Its Extensions [118.72015270085535]
本研究では,新たな視点から双方向の劣化と復元をモデル化する,新しい可逆的枠組みを提案する。
我々は、有効な劣化画像を生成し、失われたコンテンツの分布を変換する可逆モデルを開発する。
そして、ランダムに描画された潜在変数とともに、生成された劣化画像に逆変換を適用することにより、復元可能とする。
論文 参考訳(メタデータ) (2022-10-09T06:58:58Z) - Low-Light Image Enhancement with Normalizing Flow [92.52290821418778]
本稿では,この一対多の関係を正規化フローモデルを用いてモデル化する。
低照度画像/特徴を条件として取り、通常露光される画像の分布をガウス分布にマッピングすることを学ぶ可逆ネットワーク。
既存のベンチマークデータセットによる実験結果から,提案手法はより定量的,質的な結果を得ることができ,照度が良く,ノイズやアーティファクトが小さく,色も豊かになることがわかった。
論文 参考訳(メタデータ) (2021-09-13T12:45:08Z) - Perceptual Image Restoration with High-Quality Priori and Degradation
Learning [28.93489249639681]
本モデルは,復元画像と劣化画像の類似度を測定するのに有効であることを示す。
同時修復・拡張フレームワークは,実世界の複雑な分解型によく一般化する。
論文 参考訳(メタデータ) (2021-03-04T13:19:50Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。