論文の概要: Diffusion Image Prior
- arxiv url: http://arxiv.org/abs/2503.21410v1
- Date: Thu, 27 Mar 2025 11:52:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:52:32.526802
- Title: Diffusion Image Prior
- Title(参考訳): 拡散画像
- Authors: Hamadi Chihaoui, Paolo Favaro,
- Abstract要約: 私たちはDeep Image Prior(DIP)[16]からインスピレーションを受けています。
このように、DIIPの最適化プロセスは、まず画像のクリーンバージョンを再構築し、最終的に劣化した入力に過度に適合することを示す。
この結果を踏まえて,劣化モデルの事前知識を必要としない早期停止に基づくブラインド画像復元手法を提案する。
- 参考スコア(独自算出の注目度): 19.263005158979567
- License:
- Abstract: Zero-shot image restoration (IR) methods based on pretrained diffusion models have recently achieved significant success. These methods typically require at least a parametric form of the degradation model. However, in real-world scenarios, the degradation may be too complex to define explicitly. To handle this general case, we introduce the Diffusion Image Prior (DIIP). We take inspiration from the Deep Image Prior (DIP)[16], since it can be used to remove artifacts without the need for an explicit degradation model. However, in contrast to DIP, we find that pretrained diffusion models offer a much stronger prior, despite being trained without knowledge from corrupted data. We show that, the optimization process in DIIP first reconstructs a clean version of the image before eventually overfitting to the degraded input, but it does so for a broader range of degradations than DIP. In light of this result, we propose a blind image restoration (IR) method based on early stopping, which does not require prior knowledge of the degradation model. We validate DIIP on various degradation-blind IR tasks, including JPEG artifact removal, waterdrop removal, denoising and super-resolution with state-of-the-art results.
- Abstract(参考訳): 予め訓練された拡散モデルに基づくゼロショット画像復元(IR)法は,近年大きな成功を収めている。
これらの方法は通常、少なくとも分解モデルのパラメトリック形式を必要とする。
しかし、現実のシナリオでは、分解は明確に定義するには複雑すぎるかもしれない。
この一般的なケースに対処するために、拡散画像優先(DIIP)を導入する。
私たちはDeep Image Prior(DIP)[16]からインスピレーションを受けています。
しかし、DIPとは対照的に、事前学習された拡散モデルは、破損したデータからの知識を伴わずに訓練されているにもかかわらず、より強力な事前学習を提供する。
結果,DIPの最適化プロセスは,まず画像のクリーンバージョンを再構築し,最終的に劣化した入力に過度に適合するが,DIPよりも広い範囲の劣化に対して実現可能であることを示す。
この結果を踏まえて,劣化モデルの事前知識を必要としない早期停止に基づくブラインド画像復元手法を提案する。
JPEGアーティファクト除去,水滴除去,デノイング,高分解能化など,各種の分解能IRタスクに対するDIIPの検証を行った。
関連論文リスト
- Blind Image Restoration via Fast Diffusion Inversion [17.139433082780037]
Blind Image Restoration via fast Diffusion (BIRD) は、劣化モデルパラメータと復元画像の協調最適化を行うブラインド赤外線法である。
提案手法の鍵となる考え方は、初期ノイズがサンプリングされると、逆サンプリングを変更すること、すなわち、中間潜水剤を全て変更しないことである。
画像復元作業におけるBIRDの有効性を実験的に検証し,それらすべてに対して,その成果が得られたことを示す。
論文 参考訳(メタデータ) (2024-05-29T23:38:12Z) - PGDiff: Guiding Diffusion Models for Versatile Face Restoration via
Partial Guidance [65.5618804029422]
これまでの研究は、明示的な劣化モデルを用いて解空間を制限することで、注目すべき成功を収めてきた。
実世界の劣化に適応可能な新しい視点である部分的ガイダンスを導入することでPGDiffを提案する。
提案手法は,既存の拡散優先手法に勝るだけでなく,タスク固有モデルと良好に競合する。
論文 参考訳(メタデータ) (2023-09-19T17:51:33Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
本稿では,近年の拡散モデルに基づく画像復元手法について概観する。
我々は、赤外線とブラインド/現実世界の両方で拡散モデルを用いて、革新的なデザインを分類し、強調する。
本稿では,拡散モデルに基づくIRの今後の研究に向けた5つの可能性と課題を提案する。
論文 参考訳(メタデータ) (2023-08-18T08:40:38Z) - LLDiffusion: Learning Degradation Representations in Diffusion Models
for Low-Light Image Enhancement [118.83316133601319]
現在の低照度画像強調(LLIE)の深層学習法は、通常、ペア化されたデータから学んだピクセルワイドマッピングに依存している。
本稿では,拡散モデルを用いたLLIEの劣化認識学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-27T07:22:51Z) - Inversion by Direct Iteration: An Alternative to Denoising Diffusion for
Image Restoration [22.709205282657617]
Inversion by Direct Iteration (InDI)は、教師付き画像復元のための新しい定式化である。
既存の回帰ベースの手法よりもリアルで詳細な画像を生成する。
論文 参考訳(メタデータ) (2023-03-20T20:28:17Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
ブラインド顔復元は通常、トレーニングのための事前定義された劣化モデルで劣化した低品質データを合成する。
トレーニングデータに現実のケースをカバーするために、あらゆる種類の劣化を含めることは、高価で実現不可能である。
本稿では、まず、劣化した画像を粗いが劣化不変な予測に変換し、次に、粗い予測を高品質な画像に復元するために拡張モジュールを使用するロバスト劣化再帰法(DR2)を提案する。
論文 参考訳(メタデータ) (2023-03-13T06:05:18Z) - ShadowDiffusion: When Degradation Prior Meets Diffusion Model for Shadow
Removal [74.86415440438051]
画像と劣化先行情報を統合した統合拡散フレームワークを提案する。
SRDデータセット上でのPSNRは31.69dBから34.73dBへと大幅に向上した。
論文 参考訳(メタデータ) (2022-12-09T07:48:30Z) - Perceptual Image Restoration with High-Quality Priori and Degradation
Learning [28.93489249639681]
本モデルは,復元画像と劣化画像の類似度を測定するのに有効であることを示す。
同時修復・拡張フレームワークは,実世界の複雑な分解型によく一般化する。
論文 参考訳(メタデータ) (2021-03-04T13:19:50Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。