論文の概要: Adaptive Resampling with Bootstrap for Noisy Multi-Objective Optimization Problems
- arxiv url: http://arxiv.org/abs/2503.21495v1
- Date: Thu, 27 Mar 2025 13:32:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:55:04.154672
- Title: Adaptive Resampling with Bootstrap for Noisy Multi-Objective Optimization Problems
- Title(参考訳): 雑音多目的最適化問題に対するBootstrapを用いた適応型再サンプリング
- Authors: Timo Budszuhn, Mark Joachim Krallmann, Daniel Horn,
- Abstract要約: 本稿では,ブートストラップと支配確率を用いて最適化問題の性質を取り入れた再サンプリング決定関数を提案する。
この再サンプリング手法の効率性は、NSGA-IIアルゴリズムに複数のノイズ変動下でのシーケンシャルな再サンプリング手順を適用して証明する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The challenge of noisy multi-objective optimization lies in the constant trade-off between exploring new decision points and improving the precision of known points through resampling. This decision should take into account both the variability of the objective functions and the current estimate of a point in relation to the Pareto front. Since the amount and distribution of noise are generally unknown, it is desirable for a decision function to be highly adaptive to the properties of the optimization problem. This paper presents a resampling decision function that incorporates the stochastic nature of the optimization problem by using bootstrapping and the probability of dominance. The distribution-free estimation of the probability of dominance is achieved using bootstrap estimates of the means. To make the procedure applicable even with very few observations, we transfer the distribution observed at other decision points. The efficiency of this resampling approach is demonstrated by applying it in the NSGA-II algorithm with a sequential resampling procedure under multiple noise variations.
- Abstract(参考訳): ノイズの多い多目的最適化の課題は、新しい決定ポイントの探索と、再サンプリングによる既知のポイントの精度の向上の間に、一定のトレードオフがある。
この決定は、目的関数の変動性と、パレートフロントに関連する点の現在の推定の両方を考慮するべきである。
雑音の量や分布は一般に不明であるため、最適化問題の性質に高い適応性を持つ決定関数が望ましい。
本稿では,ブートストラップと支配確率を用いて,最適化問題の確率的性質を組み込んだ再サンプリング決定関数を提案する。
平均のブートストラップ推定を用いて、支配確率の分布自由推定を行う。
極めて少ない観測でも適用できるように、他の決定点で観測された分布を転送する。
この再サンプリング手法の効率性は、NSGA-IIアルゴリズムに複数のノイズ変動下でのシーケンシャルな再サンプリング手順を適用して証明する。
関連論文リスト
- Pareto Optimization with Robust Evaluation for Noisy Subset Selection [34.83487850400559]
サブセット選択は最適化の基本的な問題であり、影響やスパース回帰といった幅広い応用がある。
欲求アルゴリズムや進化進化的POSSを含む従来のアルゴリズムは、ノイズの多い環境で苦労するか、過剰な計算資源を消費する。
本稿では,頑健な評価関数を最大化し,同時にサブセットサイズを最小化する,雑音性サブセット選択(PORE)のためのロバスト評価を用いたパレート最適化に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2025-01-12T14:04:20Z) - Regularized Q-Learning with Linear Function Approximation [2.765106384328772]
線形汎関数近似を用いた正規化Q-ラーニングの2段階最適化について検討する。
特定の仮定の下では、提案アルゴリズムはマルコフ雑音の存在下で定常点に収束することを示す。
論文 参考訳(メタデータ) (2024-01-26T20:45:40Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Risk-averse Heteroscedastic Bayesian Optimization [45.12421486836736]
リスク回避型ヘテロセダスティックベイズ最適化アルゴリズム(RAHBO)を提案する。
RAHBOは、ハイリターンと低ノイズ分散の解を、ハエの騒音分布を学習しながら同定することを目的としている。
単一のソリューションのみを識別しなければならないアプリケーションに対して、最終的な決定ポイントを報告するための堅牢なルールを提供します。
論文 参考訳(メタデータ) (2021-11-05T17:38:34Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Sparse recovery by reduced variance stochastic approximation [5.672132510411465]
雑音観測によるスパース信号回復問題に対する反復2次最適化ルーチンの適用について論じる。
本稿では,Median-of-Meansのような手法を用いて,対応するソリューションの信頼性を向上する方法について述べる。
論文 参考訳(メタデータ) (2020-06-11T12:31:20Z) - Distributionally Robust Bayesian Optimization [121.71766171427433]
そこで本研究では,ゼロ次雑音最適化のための分散ロバストなベイズ最適化アルゴリズム(DRBO)を提案する。
提案アルゴリズムは, 種々の設定において, 線形に頑健な後悔を確実に得る。
提案手法は, 実世界のベンチマークと実世界のベンチマークの両方において, 頑健な性能を示す。
論文 参考訳(メタデータ) (2020-02-20T22:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。