論文の概要: Double Blind Imaging with Generative Modeling
- arxiv url: http://arxiv.org/abs/2503.21501v1
- Date: Thu, 27 Mar 2025 13:40:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:51:22.431302
- Title: Double Blind Imaging with Generative Modeling
- Title(参考訳): 生成モデルによる二重ブラインドイメージング
- Authors: Brett Levac, Ajil Jalal, Kannan Ramchandran, Jonathan I. Tamir,
- Abstract要約: 画像のブラインド逆問題(Blind inverse problem)は、画像の(ノイズの多い)測定に使用されるシステムの不確実性から生じる。
本研究では、未知のイメージングシステムにおけるパラメータの分布を特定するために、アンビエントGANに基づく生成手法を提案する。
この学習された分布は、ブラインドデコンボリューションのようなブラインド逆問題を解決するためにモデルベースのリカバリアルゴリズムで使用することができる。
- 参考スコア(独自算出の注目度): 14.270037602696883
- License:
- Abstract: Blind inverse problems in imaging arise from uncertainties in the system used to collect (noisy) measurements of images. Recovering clean images from these measurements typically requires identifying the imaging system, either implicitly or explicitly. A common solution leverages generative models as priors for both the images and the imaging system parameters (e.g., a class of point spread functions). To learn these priors in a straightforward manner requires access to a dataset of clean images as well as samples of the imaging system. We propose an AmbientGAN-based generative technique to identify the distribution of parameters in unknown imaging systems, using only unpaired clean images and corrupted measurements. This learned distribution can then be used in model-based recovery algorithms to solve blind inverse problems such as blind deconvolution. We successfully demonstrate our technique for learning Gaussian blur and motion blur priors from noisy measurements and show their utility in solving blind deconvolution with diffusion posterior sampling.
- Abstract(参考訳): 画像のブラインド逆問題(Blind inverse problem)は、画像の(ノイズの多い)測定に使用されるシステムの不確実性から生じる。
これらの測定からクリーンなイメージを復元するには、通常、暗黙的にも明示的にも、画像システムを特定する必要がある。
一般的な解決策は、画像と画像システムパラメータ(例えば、点拡散関数のクラス)の両方の先行モデルとして生成モデルを利用する。
これらの事前情報を直接的に学習するには、クリーンな画像のデータセットと、イメージングシステムのサンプルにアクセスする必要がある。
本研究では,未知のイメージングシステムにおけるパラメータの分布を特定するために,アンビエントGANを用いた生成手法を提案する。
この学習された分布は、ブラインドデコンボリューションのようなブラインド逆問題を解決するためにモデルベースのリカバリアルゴリズムで使用することができる。
ノイズ測定からガウスのぼかしと動きのぼかしを学習する手法を実証し,拡散後サンプリングによるブラインドデコンボリューションの解消に有用であることを示す。
関連論文リスト
- Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
科学と工学において、ゴールは、ある画像のモダリティを記述する既知のフォワードモデルから収集された少数の測定値から未知の画像を推測することである。
モチベートされたスコアベース拡散モデルはその経験的成功により、画像再構成に先立って模範の印象的な候補として現れた。
論文 参考訳(メタデータ) (2024-03-25T15:58:26Z) - Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data [56.81246107125692]
Ambient Diffusion Posterior Smpling (A-DPS) は、ある種類の腐敗に対して事前訓練された生成モデルである。
A-DPSは、いくつかの画像復元タスクにおいて、クリーンなデータで訓練されたモデルよりも、速度と性能の両方で優れていることが示される。
我々はAmbient Diffusionフレームワークを拡張して、FourierサブサンプルのマルチコイルMRI測定にのみアクセスしてMRIモデルをトレーニングする。
論文 参考訳(メタデータ) (2024-03-13T17:28:20Z) - Bayesian Inversion for Nonlinear Imaging Models using Deep Generative
Priors [24.544313203472992]
非線形逆問題クラスに対するメトロポリス調整ランゲヴィンアルゴリズムに基づくトラクタブル後方サンプリング手法を開発した。
本稿では,2つの非線形画像モダリティ-位相検索と光回折トモグラフィーに応用することで,この枠組みの利点を述べる。
論文 参考訳(メタデータ) (2022-03-18T17:47:29Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Solving Inverse Problems in Medical Imaging with Score-Based Generative
Models [87.48867245544106]
CT(Computed Tomography)とMRI(Magnetic Resonance Imaging)における医用画像の再構成は重要な逆問題である
機械学習に基づく既存のソリューションは通常、測定結果を医療画像に直接マッピングするモデルを訓練する。
本稿では,最近導入されたスコアベース生成モデルを利用して,逆問題解決のための教師なし手法を提案する。
論文 参考訳(メタデータ) (2021-11-15T05:41:12Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Unsupervised Lesion Detection via Image Restoration with a Normative
Prior [6.495883501989547]
本稿では,ネットワークをベースとした事前分布を規範分布とし,MAP推定を用いて画素単位で病変を検出する確率モデルを提案する。
脳MRIにおけるグリオーマと脳卒中病変の実験は、提案手法が最先端の教師なし手法よりかなり優れていることを示している。
論文 参考訳(メタデータ) (2020-04-30T18:03:18Z) - Class-Specific Blind Deconvolutional Phase Retrieval Under a Generative
Prior [8.712404218757733]
この問題はフーリエ・プチコグラフィー、X線結晶学、可視光通信など様々な画像モダリティで発生する。
本稿では,事前訓練された2つの深層生成ネットワークの下での交互勾配降下アルゴリズムを用いて,この逆問題の解法を提案する。
提案アルゴリズムは,前向き測定モデルを説明する各前駆体の範囲内で,シャープな画像とぼやけたカーネルを見つけ出そうとする。
論文 参考訳(メタデータ) (2020-02-28T07:36:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。