Consistent Multigroup Low-Rank Approximation
- URL: http://arxiv.org/abs/2503.21563v1
- Date: Thu, 27 Mar 2025 14:47:27 GMT
- Title: Consistent Multigroup Low-Rank Approximation
- Authors: Antonis Matakos, Martino Ciaperoni, Heikki Mannila,
- Abstract summary: We consider the problem of consistent low-rank approximation for multigroup data.<n>For finding the best rank$-1$ projection, we use primal-dual approaches or semidefinite programming.
- Score: 2.5056643038238504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of consistent low-rank approximation for multigroup data: we ask for a sequence of $k$ basis vectors such that projecting the data onto their spanned subspace treats all groups as equally as possible, by minimizing the maximum error among the groups. Additionally, we require that the sequence of basis vectors satisfies the natural consistency property: when looking for the best $k$ vectors, the first $d<k$ vectors are the best possible solution to the problem of finding $d$ basis vectors. Thus, this multigroup low-rank approximation method naturally generalizes \svd and reduces to \svd for data with a single group. We give an iterative algorithm for this task that sequentially adds to the basis the vector that gives the best rank$-1$ projection according to the min-max criterion, and then projects the data onto the orthogonal complement of that vector. For finding the best rank$-1$ projection, we use primal-dual approaches or semidefinite programming. We analyze the theoretical properties of the algorithms and demonstrate empirically that the proposed methods compare favorably to existing methods for multigroup (or fair) PCA.
Related papers
- SoS Certificates for Sparse Singular Values and Their Applications: Robust Statistics, Subspace Distortion, and More [37.208622097149714]
We give a new family of upper-time algorithms which can certify bounds on the maximum of $|M u|$.<n>Our certification algorithm makes essential use of the Sum-of-Squares hierarchy.
arXiv Detail & Related papers (2024-12-30T18:59:46Z) - Optimal level set estimation for non-parametric tournament and crowdsourcing problems [49.75262185577198]
Motivated by crowdsourcing, we consider a problem where we partially observe the correctness of the answers of $n$ experts on $d$ questions.
In this paper, we assume that the matrix $M$ containing the probability that expert $i$ answers correctly to question $j$ is bi-isotonic up to a permutation of it rows and columns.
We construct an efficient-time algorithm that turns out to be minimax optimal for this classification problem.
arXiv Detail & Related papers (2024-08-27T18:28:31Z) - Optimal Bound for PCA with Outliers using Higher-Degree Voronoi Diagrams [0.0]
We introduce new algorithms for Principal Component Analysis (PCA) with outliers.
We navigate to the optimal subspace for PCA even in the presence of outliers.
This approach achieves an optimal solution with a time complexity of $nd+mathcalO(1)textpoly(n,d)$.
arXiv Detail & Related papers (2024-08-13T13:05:36Z) - Efficient Algorithms for Empirical Group Distributional Robust
Optimization and Beyond [15.664414751701718]
We formulate empirical GDRO as a $textittwo-level$ finite-sum convex-concave minimax optimization problem.
We compute the snapshot and mirror snapshot point by a one-index-shifted weighted average, which distinguishes us from the naive ergodic average.
Remarkably, our approach outperforms the state-of-the-art method by a factor of $sqrtm$.
arXiv Detail & Related papers (2024-03-06T09:14:24Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Optimal N-ary ECOC Matrices for Ensemble Classification [1.3561997774592662]
A new construction of $N$-ary error-correcting output code (ECOC) matrices for ensemble classification methods is presented.
Given any prime integer $N$, this deterministic construction generates base-$N$ symmetric square matrices $M$ of prime-power dimension having optimal minimum Hamming distance between any two of its rows and columns.
arXiv Detail & Related papers (2021-10-05T16:50:15Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - Fuzzy Clustering with Similarity Queries [56.96625809888241]
The fuzzy or soft objective is a popular generalization of the well-known $k$-means problem.
We show that by making few queries, the problem becomes easier to solve.
arXiv Detail & Related papers (2021-06-04T02:32:26Z) - Hutch++: Optimal Stochastic Trace Estimation [75.45968495410048]
We introduce a new randomized algorithm, Hutch++, which computes a $(1 pm epsilon)$ approximation to $tr(A)$ for any positive semidefinite (PSD) $A$.
We show that it significantly outperforms Hutchinson's method in experiments.
arXiv Detail & Related papers (2020-10-19T16:45:37Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
We consider the problem of ranking $N$ objects starting from a set of noisy pairwise comparisons provided by a crowd of equal workers.
We propose a class of non-adaptive ranking algorithms that rely on a least-squares intrinsic optimization criterion for the estimation of qualities.
arXiv Detail & Related papers (2020-02-26T16:19:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.