論文の概要: Provable Reduction in Communication Rounds for Non-Smooth Convex Federated Learning
- arxiv url: http://arxiv.org/abs/2503.21627v1
- Date: Thu, 27 Mar 2025 15:48:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:51:04.732050
- Title: Provable Reduction in Communication Rounds for Non-Smooth Convex Federated Learning
- Title(参考訳): 非平滑な連接学習のための通信ラウンドの確率的削減
- Authors: Karlo Palenzuela, Ali Dadras, Alp Yurtsever, Tommy Löfstedt,
- Abstract要約: 我々は,複数の局所的なステップを改良したフェデレート学習アルゴリズムであるFedMLSを提案する。
FedMLSは$mathcalO(1/epsilon)$通信ラウンドで$epsilon$-suboptimalソリューションを得る。
- 参考スコア(独自算出の注目度): 8.477067031193712
- License:
- Abstract: Multiple local steps are key to communication-efficient federated learning. However, theoretical guarantees for such algorithms, without data heterogeneity-bounding assumptions, have been lacking in general non-smooth convex problems. Leveraging projection-efficient optimization methods, we propose FedMLS, a federated learning algorithm with provable improvements from multiple local steps. FedMLS attains an $\epsilon$-suboptimal solution in $\mathcal{O}(1/\epsilon)$ communication rounds, requiring a total of $\mathcal{O}(1/\epsilon^2)$ stochastic subgradient oracle calls.
- Abstract(参考訳): 複数のローカルステップがコミュニケーション効率のよいフェデレーション学習の鍵となる。
しかし、データ不均一性バウンディング仮定がなければ、そのようなアルゴリズムの理論的保証は、一般的な非滑らか凸問題に欠けている。
プロジェクション効率の最適化手法を応用し、複数の局所的なステップを改良したフェデレート学習アルゴリズムであるFedMLSを提案する。
FedMLSは$\mathcal{O}(1/\epsilon)$通信ラウンドで$\epsilon$-suboptimalソリューションを獲得し、合計$\mathcal{O}(1/\epsilon^2)$確率的な下級オラクル呼び出しを必要とする。
関連論文リスト
- MARINA-P: Superior Performance in Non-smooth Federated Optimization with Adaptive Stepsizes [57.24311218570012]
EF21-P (匿名2024) と MARINA-P (arXiv:2402.06412) の非滑らか凸理論を非サイズ凸設定で拡張する。
我々は、定数、減少、適応(aktype)ステップの理論的保証を提供する。
論文 参考訳(メタデータ) (2024-12-22T16:18:34Z) - Stochastic Constrained Decentralized Optimization for Machine Learning with Fewer Data Oracles: a Gradient Sliding Approach [32.36073823372713]
機械学習モデルでは、アルゴリズムはその勾配のためにデータセンターとサンプルデータに通信する必要がある。
これにより、通信効率が良く、勾配計算の数を最小限に抑える分散最適化アルゴリズムの必要性が生じる。
通信効率が高く,$varepsilon$-approximate のソリューションを実現する。
論文 参考訳(メタデータ) (2024-04-03T06:55:59Z) - Solving a Class of Non-Convex Minimax Optimization in Federated Learning [84.98927714326908]
ミニマックス問題は、機械学習のトレーニングから大規模学習まで、機械学習アプリケーション全体にわたって発生する。
本稿では,非ミニマックス問題 (emphi) に対するアルゴリズムのクラスを提案し,複雑性を$varepsilon-6)$に減らした。
我々は、FedSGDA-Mが$O(kappa2-3)$と$O(kappa2-3)$の最もよく知られた通信量を持つことを示す。
論文 参考訳(メタデータ) (2023-10-05T15:48:41Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
相補的な合成条件に基づく2つの難解なミラー降下アルゴリズムを導入する。
注目すべきは、どちらのアルゴリズムも、目的関数のリプシッツ定数や滑らかさに関する事前の知識なしで機能する。
本稿では,大規模半確定プログラム上での手法の効率性とロバスト性を示す。
論文 参考訳(メタデータ) (2023-06-30T08:34:29Z) - Decentralized Weakly Convex Optimization Over the Stiefel Manifold [28.427697270742947]
我々は分散環境でスティーフェル多様体に焦点をあて、$nMn log-1)$のエージェントの連結ネットワークをテストする。
そこで本研究では,nMn log-1 以下の自然ステーションを強制的に強制する分散下位段階法 (DRSM)$ という手法を提案する。
論文 参考訳(メタデータ) (2023-03-31T02:56:23Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
多くの実世界の問題は複雑な非機能的制約を持ち、多くのデータポイントを使用する。
提案手法は,従来最もよく知られた結果で既存手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-19T14:48:54Z) - Gradient-Free Methods for Deterministic and Stochastic Nonsmooth
Nonconvex Optimization [94.19177623349947]
非滑らかな非最適化問題は、機械学習とビジネス製造に現れる。
2つのコア課題は、有限収束を保証する効率的な方法の開発を妨げる。
GFMとSGFMの2相版も提案され, 改良された大規模評価結果が得られた。
論文 参考訳(メタデータ) (2022-09-12T06:53:24Z) - A Projection-free Algorithm for Constrained Stochastic Multi-level
Composition Optimization [12.096252285460814]
合成最適化のためのプロジェクションフリー条件付き勾配型アルゴリズムを提案する。
提案アルゴリズムで要求されるオラクルの数と線形最小化オラクルは,それぞれ$mathcalO_T(epsilon-2)$と$mathcalO_T(epsilon-3)$である。
論文 参考訳(メタデータ) (2022-02-09T06:05:38Z) - Distributed Stochastic Consensus Optimization with Momentum for
Nonconvex Nonsmooth Problems [45.88640334610308]
本稿では,非滑らかな問題に対する分散最適化アルゴリズムを提案する。
提案アルゴリズムは,過度な通信を実現することができることを示す。
提案アルゴリズムの有効性を示す実験を行った。
論文 参考訳(メタデータ) (2020-11-10T13:12:21Z) - A Distributed Cubic-Regularized Newton Method for Smooth Convex
Optimization over Networks [19.767938436958296]
ネットワーク上の大規模凸最適化のための分散3次正規化ニュートン法を提案する。
コスト関数がリプシッツ勾配とヘシアンと凸であるときに、$O(k-3)$収束率を示し、$k$は反復数である。
論文 参考訳(メタデータ) (2020-07-07T15:38:47Z) - Nonconvex Zeroth-Order Stochastic ADMM Methods with Lower Function Query
Complexity [109.54166127479093]
ゼロ次法(ゼロ次法、英: Zeroth-order method)は、機械学習問題を解決するための効果的な最適化手法のクラスである。
本稿では,非有限項問題を解くために,より高速なゼロ階交互勾配法乗算器 (MMADMM) を提案する。
我々は、ZOMMAD法が、$epsilon$-stationary pointを見つけるために、より低い関数$O(frac13nfrac1)$を達成することができることを示す。
同時に、より高速なゼロオーダーオンラインADM手法(M)を提案する。
論文 参考訳(メタデータ) (2019-07-30T02:21:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。