論文の概要: How do language models learn facts? Dynamics, curricula and hallucinations
- arxiv url: http://arxiv.org/abs/2503.21676v1
- Date: Thu, 27 Mar 2025 16:43:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:54:27.051229
- Title: How do language models learn facts? Dynamics, curricula and hallucinations
- Title(参考訳): 言語モデルは事実をどのように学習するか? ダイナミクス、カリキュラム、幻覚
- Authors: Nicolas Zucchet, Jörg Bornschein, Stephanie Chan, Andrew Lampinen, Razvan Pascanu, Soham De,
- Abstract要約: 大規模言語モデルは事前学習中に膨大な知識を蓄積するが、この買収を統括する力学はいまだに理解されていない。
本研究は,人工的事実記憶課題における言語モデルの学習力学について検討する。
- 参考スコア(独自算出の注目度): 22.693703460345873
- License:
- Abstract: Large language models accumulate vast knowledge during pre-training, yet the dynamics governing this acquisition remain poorly understood. This work investigates the learning dynamics of language models on a synthetic factual recall task, uncovering three key findings: First, language models learn in three phases, exhibiting a performance plateau before acquiring precise factual knowledge. Mechanistically, this plateau coincides with the formation of attention-based circuits that support recall. Second, the training data distribution significantly impacts learning dynamics, as imbalanced distributions lead to shorter plateaus. Finally, hallucinations emerge simultaneously with knowledge, and integrating new knowledge into the model through fine-tuning is challenging, as it quickly corrupts its existing parametric memories. Our results emphasize the importance of data distribution in knowledge acquisition and suggest novel data scheduling strategies to accelerate neural network training.
- Abstract(参考訳): 大規模言語モデルは事前学習中に膨大な知識を蓄積するが、この買収を統括する力学はいまだに理解されていない。
本研究は, 人工的事実記憶課題における言語モデルの学習動態を考察し, 3つの重要な知見を明らかにする。
機械的には、この台地はリコールをサポートするアテンションベースの回路の形成と一致する。
第2に、トレーニングデータ分布は、不均衡な分布がより短い台地につながるため、学習力学に大きな影響を及ぼす。
最後に、幻覚は知識と同時に現れ、微調整によって新しい知識をモデルに統合することは困難である。
本研究は,知識獲得におけるデータ分散の重要性を強調し,ニューラルネットワーク学習を加速するための新しいデータスケジューリング戦略を提案する。
関連論文リスト
- Spurious Forgetting in Continual Learning of Language Models [20.0936011355535]
大規模言語モデル(LLM)の最近の進歩は、継続学習において複雑な現象を呈している。
大規模な訓練にもかかわらず、モデルは大幅な性能低下を経験する。
本研究では,このような性能低下が,真の知識喪失よりもタスクアライメントの低下を反映していることが示唆された。
論文 参考訳(メタデータ) (2025-01-23T08:09:54Z) - Developmental Predictive Coding Model for Early Infancy Mono and Bilingual Vocal Continual Learning [69.8008228833895]
本稿では,連続学習機構を備えた小型生成ニューラルネットワークを提案する。
我々のモデルは解釈可能性を重視し,オンライン学習の利点を実証する。
論文 参考訳(メタデータ) (2024-12-23T10:23:47Z) - Gradual Learning: Optimizing Fine-Tuning with Partially Mastered Knowledge in Large Language Models [51.20499954955646]
大規模言語モデル(LLM)は、事前学習期間中に大量のテキストコーパスから膨大な量の知識を取得する。
微調整や推論のような後段では、モデルは初期訓練でカバーされていない知識に遭遇する可能性がある。
本稿では,モデル全体のテスト精度と知識保持性を改善するための2段階の微調整戦略を提案する。
論文 参考訳(メタデータ) (2024-10-08T08:35:16Z) - The mechanistic basis of data dependence and abrupt learning in an
in-context classification task [0.3626013617212666]
本研究では,言語固有の特定の分布特性が,2種類の学習のトレードオフや同時出現を制御していることを示す。
インコンテキスト学習は、誘導ヘッドの突然の出現によって駆動され、その後、インウェイト学習と競合する。
注意に基づくネットワークの急激な遷移は、ICLを実現するのに必要な多層演算の特定の連鎖によって生じると提案する。
論文 参考訳(メタデータ) (2023-12-03T20:53:41Z) - Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism
of Language Models [49.39276272693035]
大規模事前学習型言語モデルは、顕著な記憶能力を示している。
プレトレーニングのないバニラニューラルネットワークは、破滅的な忘れ物問題に悩まされていることが長年観察されてきた。
1)バニラ言語モデルは忘れがちである; 2)事前学習は暗黙の言語モデルにつながる; 3)知識の妥当性と多様化は記憶形成に大きな影響を及ぼす。
論文 参考訳(メタデータ) (2023-05-16T03:50:38Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
我々は脳のメタラーニングと連想機構に基づく生涯学習のパラダイムを設計する。
知識の抽出と知識の記憶という2つの側面から問題に取り組む。
提案した学習パラダイムが,異なるタスクのモデルを同じ最適に収束させることができることを理論的に分析した。
論文 参考訳(メタデータ) (2022-08-27T09:27:36Z) - DKPLM: Decomposable Knowledge-enhanced Pre-trained Language Model for
Natural Language Understanding [19.478288026844893]
知識強化事前学習言語モデル(英: Knowledge-Enhanced Pre-trained Language Models, KEPLM)は、知識グラフから3重関係を注入して言語理解能力を向上させる事前学習モデルである。
従来の研究は、知識グラフから得られた知識を表現するための知識エンコーダとモデルを統合する。
本稿では,事前学習,微調整,推論段階における事前学習言語モデルの知識注入過程を分解する,DKPLMという新しいKEPLMを提案する。
論文 参考訳(メタデータ) (2021-12-02T08:19:42Z) - Training Dynamics for Text Summarization Models [45.62439188988816]
我々は、ニュース要約に着目して、世代モデルのトレーニングダイナミクスを分析する。
異なるデータセット (CNN/DM, XSum, MediaSum) と要約特性を用いて, モデルが微調整プロセスの異なる段階で何を学習するかを検討する。
コピー動作などの特性は、トレーニングプロセスの早い段階で学習され、これらの観察はドメイン間で堅牢であることがわかった。
一方, 隠蔽事実の幻覚などの事実誤りは後期に学習され, この行動は領域によって多様である。
論文 参考訳(メタデータ) (2021-10-15T21:13:41Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
問題解決可能なトレーニングダイナミクスを備えたニューラルネットワークのクラスを提示する。
現実的なディープラーニング環境において,モデルの予測とトレーニングのダイナミクスとの間には,よい一致がある。
我々の結果は、異なる学習率でトレーニングされたモデルの特性に光を当てたと信じています。
論文 参考訳(メタデータ) (2020-03-04T17:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。