論文の概要: Outlier dimensions favor frequent tokens in language model
- arxiv url: http://arxiv.org/abs/2503.21718v1
- Date: Thu, 27 Mar 2025 17:30:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:54:38.913224
- Title: Outlier dimensions favor frequent tokens in language model
- Title(参考訳): 外乱次元は言語モデルにおける頻繁なトークンを好む
- Authors: Iuri Macocco, Nora Graichen, Gemma Boleda, Marco Baroni,
- Abstract要約: 我々は,多くの現代言語モデルにおいて,不規則な次元が出現することを示し,その関数を常に頻繁な単語の予測に遡ることを示す。
我々は,多くの異なるモデルによって有用なトークン予測を実装するための特別なメカニズムである,と結論付けている。
- 参考スコア(独自算出の注目度): 11.112088499182375
- License:
- Abstract: We study last-layer outlier dimensions, i.e.dimensions that display extreme activations for the majority of inputs. We show that outlier dimensions arise in many different modern language models, and trace their function back to the heuristic of constantly predicting frequent words. We further show how a model can block this heuristic when it is not contextually appropriate, by assigning a counterbalancing weight mass to the remaining dimensions, and we investigate which model parameters boost outlier dimensions and when they arise during training. We conclude that outlier dimensions are a specialized mechanism discovered by many distinct models to implement a useful token prediction heuristic.
- Abstract(参考訳): 入力の大部分に対して極端なアクティベーションを示す最後の層外層次元、すなわち次元について検討する。
我々は,多くの現代言語モデルにおいて,不規則な次元が出現することを示し,その関数は頻繁な単語を常に予測するヒューリスティックに遡ることを示した。
さらに, モデルが余剰次元に反バランス重みを割り当てることで, 文脈的に適切でない場合, モデルがこのヒューリスティックをブロックできることを示す。
我々は,多くの異なるモデルによって,有意なトークン予測ヒューリスティックを実現するための特別なメカニズムである,と結論付けている。
関連論文リスト
- Causal Estimation of Memorisation Profiles [58.20086589761273]
言語モデルにおける記憶の理解は、実践的および社会的意味を持つ。
覚書化(英: Memorisation)とは、モデルがそのインスタンスを予測できる能力に対して、あるインスタンスでトレーニングを行うことによる因果的影響である。
本稿では,計量学の差分差分設計に基づく,新しい,原理的,効率的な記憶推定法を提案する。
論文 参考訳(メタデータ) (2024-06-06T17:59:09Z) - Frequency Explains the Inverse Correlation of Large Language Models'
Size, Training Data Amount, and Surprisal's Fit to Reading Times [15.738530737312335]
近年の研究では、トランスフォーマーに基づく言語モデルが大きくなり、非常に大量のデータで訓練されているため、その推定結果が自然主義的な人間の読解時間に適合していることが示されている。
本稿では,これら2つの傾向の根底にある説明要因として,単語頻度が重要であることを示す一連の分析結果を示す。
その結果,トランスフォーマーをベースとした言語モデルによる推定は,稀な単語を予測するために学習する超人的に複雑な関連性から,人間の期待から逸脱していることがわかった。
論文 参考訳(メタデータ) (2024-02-03T20:22:54Z) - Outlier Dimensions Encode Task-Specific Knowledge [20.2199013945396]
大規模言語モデル(LLM)における微調整が外乱次元に与える影響について検討する。
結果から,外乱次元は重要なタスク固有の知識を符号化し,一方の外乱次元における表現の値が下流モデル決定を駆動できることが示唆された。
論文 参考訳(メタデータ) (2023-10-26T18:22:13Z) - Training Trajectories of Language Models Across Scales [99.38721327771208]
言語モデルのスケールアップは、前例のないパフォーマンス向上につながった。
異なるサイズの言語モデルは事前学習中にどのように学習するか?
より大きな言語モデルはなぜ望ましい振る舞いを示すのか?
論文 参考訳(メタデータ) (2022-12-19T19:16:29Z) - Rarely a problem? Language models exhibit inverse scaling in their
predictions following few-type quantifiers [0.6091702876917281]
言語モデルにおいて特に課題となる「おもちゃのような2人の子供」のような「2つの」型の量化器に焦点をあてる。
人間の2つの神経言語実験から、異なる大きさの22個の自己回帰トランスフォーマーモデルまで、960の英語文刺激を提示する。
論文 参考訳(メタデータ) (2022-12-16T20:01:22Z) - A Multi-dimensional Evaluation of Tokenizer-free Multilingual Pretrained
Models [87.7086269902562]
サブワードベースのモデルは、多くの設定において依然として最も実用的な選択肢であることを示している。
我々は,新しいモデルを設計し,評価する際のこれらの要因を検討するために,トークンフリーな手法の今後の取り組みを奨励する。
論文 参考訳(メタデータ) (2022-10-13T15:47:09Z) - Low-Rank Constraints for Fast Inference in Structured Models [110.38427965904266]
この研究は、大規模構造化モデルの計算とメモリの複雑さを低減するための単純なアプローチを示す。
言語モデリング,ポリフォニック・ミュージック・モデリング,教師なし文法帰納法,ビデオ・モデリングのためのニューラルパラメータ構造モデルを用いた実験により,我々の手法は大規模状態空間における標準モデルの精度と一致することを示した。
論文 参考訳(メタデータ) (2022-01-08T00:47:50Z) - Are Some Words Worth More than Others? [3.5598388686985354]
簡単な単語予測タスクの枠組み内での2つの本質的な評価手法を提案する。
提案手法を用いて,広く使用されている大規模英語モデルの評価を行った。
論文 参考訳(メタデータ) (2020-10-12T23:12:11Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z) - Limits of Detecting Text Generated by Large-Scale Language Models [65.46403462928319]
誤情報キャンペーンで使用される可能性があるため、長く一貫性のあるテキストを生成できる大規模な言語モデルが危険であると考える者もいる。
ここでは、仮説テスト問題として大規模言語モデル出力検出を定式化し、テキストを真あるいは生成されたものと分類する。
論文 参考訳(メタデータ) (2020-02-09T19:53:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。