論文の概要: Reconstructing Humans with a Biomechanically Accurate Skeleton
- arxiv url: http://arxiv.org/abs/2503.21751v1
- Date: Thu, 27 Mar 2025 17:56:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:52:19.753966
- Title: Reconstructing Humans with a Biomechanically Accurate Skeleton
- Title(参考訳): 生体力学的に正確な骨格を持つヒトの再建
- Authors: Yan Xia, Xiaowei Zhou, Etienne Vouga, Qixing Huang, Georgios Pavlakos,
- Abstract要約: 本研究では,生体力学的に正確な骨格モデルを用いて,単一の画像から3次元人体を再構築する手法を提案する。
3次元メッシュ回復のための最先端の手法と比較して,我々のモデルは標準ベンチマーク上での競合性能を実現している。
- 参考スコア(独自算出の注目度): 55.06027148976482
- License:
- Abstract: In this paper, we introduce a method for reconstructing 3D humans from a single image using a biomechanically accurate skeleton model. To achieve this, we train a transformer that takes an image as input and estimates the parameters of the model. Due to the lack of training data for this task, we build a pipeline to produce pseudo ground truth model parameters for single images and implement a training procedure that iteratively refines these pseudo labels. Compared to state-of-the-art methods for 3D human mesh recovery, our model achieves competitive performance on standard benchmarks, while it significantly outperforms them in settings with extreme 3D poses and viewpoints. Additionally, we show that previous reconstruction methods frequently violate joint angle limits, leading to unnatural rotations. In contrast, our approach leverages the biomechanically plausible degrees of freedom making more realistic joint rotation estimates. We validate our approach across multiple human pose estimation benchmarks. We make the code, models and data available at: https://isshikihugh.github.io/HSMR/
- Abstract(参考訳): 本稿では,生体力学的に正確な骨格モデルを用いて,単一の画像から3次元人体を再構築する手法を提案する。
これを実現するために,画像を入力とし,モデルのパラメータを推定する変換器を訓練する。
このタスクのトレーニングデータが不足しているため、単一画像に対して擬似基底真理モデルパラメータを生成するパイプラインを構築し、これらの擬似ラベルを反復的に洗練する訓練手順を実装する。
3次元メッシュ回復のための最先端の手法と比較して、我々のモデルは標準ベンチマーク上での競合性能を実現し、極端な3次元ポーズと視点で設定した場合、それらの性能は著しく向上する。
さらに, 従来の再建法は関節角度制限にしばしば違反し, 不自然な回転を生じさせることを示した。
対照的に,本手法は生体力学的に妥当な自由度を利用して,より現実的な関節回転推定を行う。
複数の人のポーズ推定ベンチマークにまたがってアプローチを検証する。
私たちはコード、モデル、データを次のように公開しています。
関連論文リスト
- ARTS: Semi-Analytical Regressor using Disentangled Skeletal Representations for Human Mesh Recovery from Videos [18.685856290041283]
ARTSは、一般的なベンチマークにおけるフレーム単位の精度と時間的一貫性の両方において、既存の最先端のビデオベースの手法を超越している。
ビデオから3Dスケルトンを推定するために,スケルトン推定およびアンタングルメントモジュールを提案する。
回帰器は、Temporal Inverse Kinematics (TIK), bone-guided Shape Fitting (BSF), Motion-Centric Refinement (MCR)の3つのモジュールで構成されている。
論文 参考訳(メタデータ) (2024-10-21T02:06:43Z) - Score-Guided Diffusion for 3D Human Recovery [10.562998991986102]
Score-Guided Human Mesh Recovery (ScoreHMR)を提案する。
ScoreHMRはモデルフィッティングアプローチを模倣するが、拡散モデルの潜在空間におけるスコアガイダンスによって画像観察との整合が達成される。
提案手法は, (i) 単フレームモデルフィッティング, (ii) 複数視点からの再構成, (iii) ビデオシーケンスで人間を再構成することである。
論文 参考訳(メタデータ) (2024-03-14T17:56:14Z) - Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image [85.91935485902708]
ゼロショット単視距離深度モデルの鍵は、大規模データトレーニングと様々なカメラモデルからの距離あいまいさの解消の組合せにあることを示す。
本稿では,あいまいさ問題に明示的に対処し,既存の単分子モデルにシームレスに接続可能な標準カメラ空間変換モジュールを提案する。
本手法は, ランダムに収集したインターネット画像上での計測3次元構造の正確な復元を可能にする。
論文 参考訳(メタデータ) (2023-07-20T16:14:23Z) - Adversarial Parametric Pose Prior [106.12437086990853]
我々は、SMPLパラメータを現実的なポーズを生成する値に制限する事前学習を行う。
得られた先行学習は実データ分布の多様性をカバーし、2次元キーポイントからの3次元再構成の最適化を容易にし、画像からの回帰に使用する場合のポーズ推定精度を向上することを示す。
論文 参考訳(メタデータ) (2021-12-08T10:05:32Z) - Creating and Reenacting Controllable 3D Humans with Differentiable
Rendering [3.079885946230076]
本稿では,人間アクターの外観を伝達し再現する,エンドツーエンドのニューラルレンダリングアーキテクチャを提案する。
提案手法は、人体多様体構造をモデル化するために、慎重に設計されたグラフ畳み込みネットワーク(GCN)を利用する。
合成可能レンダリングと3次元パラメトリックモデルの両方の利点を生かして,本手法は完全に制御可能である。
論文 参考訳(メタデータ) (2021-10-22T12:40:09Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
本稿では,2次元の証拠から3次元の人体復元の問題に焦点を当てた。
我々は,この問題を,入力から3Dポーズの分布へのマッピング学習として再考した。
論文 参考訳(メタデータ) (2021-08-26T17:55:11Z) - HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D
Human Pose and Shape Estimation [39.67289969828706]
本稿では,体メッシュ推定と3次元キーポイント推定のギャップを埋めるために,新しいハイブリッド逆キネマティクスソリューション(HybrIK)を提案する。
HybrIKは、正確な3D関節を相対的なボディ部分回転に変換し、3Dボディーメッシュを再構築する。
その結果,HybrIKは3次元ポーズの精度とパラメトリックな人間の身体構造の両方を保っていることがわかった。
論文 参考訳(メタデータ) (2020-11-30T10:32:30Z) - 3D Multi-bodies: Fitting Sets of Plausible 3D Human Models to Ambiguous
Image Data [77.57798334776353]
単眼・部分閉塞視からヒトの高密度3次元再構成を実現することの問題点を考察する。
身体の形状やポーズをパラメータ化することで、あいまいさをより効果的にモデル化できることを示唆する。
提案手法は, 3次元人間の標準ベンチマークにおいて, あいまいなポーズ回復において, 代替手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-02T13:55:31Z) - Neural Descent for Visual 3D Human Pose and Shape [67.01050349629053]
入力RGB画像から3次元のポーズと形状を復元するディープニューラルネットワーク手法を提案する。
我々は最近導入された表現力のあるボディ統計モデルGHUMに頼っている。
我々の方法論の中心は、HUmanNeural Descent (HUND)と呼ばれるアプローチの学習と最適化である。
論文 参考訳(メタデータ) (2020-08-16T13:38:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。