論文の概要: Skip-Vision: Efficient and Scalable Acceleration of Vision-Language Models via Adaptive Token Skipping
- arxiv url: http://arxiv.org/abs/2503.21817v2
- Date: Mon, 31 Mar 2025 02:19:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 11:09:34.641089
- Title: Skip-Vision: Efficient and Scalable Acceleration of Vision-Language Models via Adaptive Token Skipping
- Title(参考訳): Skip-Vision:適応的トークンスキッピングによる視覚言語モデルの効率的かつスケーラブルな加速
- Authors: Weili Zeng, Ziyuan Huang, Kaixiang Ji, Yichao Yan,
- Abstract要約: 重要なボトルネックは、きめ細かい画像理解に必要な視覚トークンの拡散に起因する。
視覚言語モデルにおけるトレーニングと推論の非効率性に対処する統合フレームワークであるSkip-Visionを提案する。
実験の結果,Skip-Visionはトレーニング時間を最大35%短縮し,FLOPを75%,レイテンシを45%短縮した。
- 参考スコア(独自算出の注目度): 13.846838416902575
- License:
- Abstract: Transformer-based models have driven significant advancements in Multimodal Large Language Models (MLLMs), yet their computational costs surge drastically when scaling resolution, training data, and model parameters. A key bottleneck stems from the proliferation of visual tokens required for fine-grained image understanding. We propose Skip-Vision, a unified framework addressing both training and inference inefficiencies in vision-language models. On top of conventional token compression approaches, our method introduces two complementary acceleration strategies. For training acceleration, we observe that Feed-Forward Network (FFN) computations on visual tokens induce marginal feature updates. This motivates our Skip-FFN strategy, which bypasses FFN layers for redundant visual tokens. For inference acceleration, we design a selective KV-cache removal mechanism that prunes the skipped key-value pairs during decoding while preserving model performance. Experimental results demonstrate that Skip-Vision reduces training time by up to 35\%, inference FLOPs by 75\%, and latency by 45\%, while achieving comparable or superior performance to existing methods. Our work provides a practical solution for scaling high-performance MLLMs with enhanced efficiency.
- Abstract(参考訳): トランスフォーマーベースのモデルは、MLLM(Multimodal Large Language Models)の大幅な進歩を導いてきたが、その計算コストは、スケールする解像度、トレーニングデータ、モデルパラメータにおいて劇的に上昇した。
重要なボトルネックは、きめ細かい画像理解に必要な視覚トークンの拡散に起因する。
視覚言語モデルにおけるトレーニングと推論の非効率性に対処する統合フレームワークであるSkip-Visionを提案する。
従来のトークン圧縮手法に加えて,2つの補完的加速度戦略を導入する。
トレーニングアクセラレーションでは,視覚トークン上のFeed-Forward Network(FFN)計算が限界特徴更新を誘導する。
これは、冗長なビジュアルトークンのためにFFN層をバイパスするSkip-FFN戦略のモチベーションになります。
推論高速化のために、モデル性能を保ちながら復号時にスキップされたキー-値ペアをプーンする選択的なKV-cache除去機構を設計する。
実験結果から,Skip-Visionはトレーニング時間を最大35\%,推論FLOPを75\%,レイテンシを45\%削減し,既存の手法と同等あるいは優れた性能を実現した。
本研究は,高性能MLLMを高効率でスケールするための実用的なソリューションを提供する。
関連論文リスト
- FOLDER: Accelerating Multi-modal Large Language Models with Enhanced Performance [7.889590793589825]
視覚トークン列の長さを削減するために設計された,シンプルで効果的なプラグアンドプレイモジュールであるFOLDERを紹介する。
我々は、異なる還元戦略によってもたらされた情報損失を分析し、視覚的冗長性を取り除きながら鍵情報を保存するFOLDERを開発した。
FOLDERは、オリジナルのモデルと同等またはそれ以上のパフォーマンスを達成すると同時に、最大70%のビジュアルトークンを削除することで、複雑さを劇的に低減する。
論文 参考訳(メタデータ) (2025-01-05T03:28:45Z) - Numerical Pruning for Efficient Autoregressive Models [87.56342118369123]
本稿では,デコーダのみを用いた変圧器を用いた自己回帰モデルの圧縮に着目する。
具体的には,ニュートン法とモジュールの数値スコアをそれぞれ計算する学習自由プルーニング法を提案する。
提案手法の有効性を検証するため,理論的支援と広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-12-17T01:09:23Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
高解像度の画像やビデオは、彼らの広く普及するための障壁となる。
MLLMにおける視覚トークンの圧縮は、推論コストを削減するための有望なアプローチとして現れている。
本稿では,事前学習した視覚エンコーダの能力を利用して類似画像セグメントをグループ化する,新たなグループ化機構であるVisToGを紹介する。
論文 参考訳(メタデータ) (2024-11-26T09:36:02Z) - ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VLは、事前訓練された大規模言語モデルに基づいてモデルをチューニングする効率的な視覚言語手法である。
我々のフレームワークはScienceQAデータセットの平均精度を0.77%上回る。
論文 参考訳(メタデータ) (2024-10-23T11:31:06Z) - PAR: Prompt-Aware Token Reduction Method for Efficient Large Multimodal Models [32.33892531885448]
MLLM(Multimodal large language model)は、視覚的タスクにまたがる強力なパフォーマンスを示す。
しかし、それらの効率は、マルチモーダル入力で長いコンテキストを処理することによる計算とメモリの要求によって妨げられている。
PAR(Prompt-Aware Token Reduction)は,モデルの性能を損なうことなく,視覚トークンを効率よく削減する新しい,プラグアンドプレイ方式である。
論文 参考訳(メタデータ) (2024-10-09T07:13:22Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
我々は、視覚トークンの数を減らさずに、冗長な視覚トークンを「スキップ層」として活用することで、視覚計算を減らし、新しいアプローチを導入する。
提案手法であるVideoLLM-MoDは深度混合LLMにインスパイアされ,長期・ストリーミングビデオにおける多数の視覚トークンの課題に対処する。
論文 参考訳(メタデータ) (2024-08-29T17:21:58Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
本稿では,視覚言語モデルを用いた漸進的学習における長期的忘れを緩和するパラメータ効率の連続学習フレームワークを提案する。
提案手法では,Mixture-of-Experts (MoE)アダプタの統合により,事前学習したCLIPモデルの動的拡張を行う。
視覚言語モデルのゼロショット認識能力を維持するために,分布判別オートセレクタを提案する。
論文 参考訳(メタデータ) (2024-03-18T08:00:23Z) - An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models [65.37846460916042]
視覚的トークンに対する注意計算は,LVLMの深い層において極めて非効率であることがわかった。
本稿では,計算効率の最適化を目的とした多用途プラグアンドプレイ方式であるFastVを紹介する。
論文 参考訳(メタデータ) (2024-03-11T14:35:32Z) - Skip-Attention: Improving Vision Transformers by Paying Less Attention [55.47058516775423]
視覚計算変換器(ViT)は、すべての層で高価な自己注意操作を使用する。
また,SkipAtを提案する。SkipAtは,先行層から自己注意を再利用して1層以上の注意を近似する手法である。
本稿では,画像の分類と自己教師型学習,ADE20Kのセマンティックセグメンテーション,SIDDの画像デノイング,DAVISのビデオデノナイズにおける手法の有効性を示す。
論文 参考訳(メタデータ) (2023-01-05T18:59:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。