PHYSICS: Benchmarking Foundation Models on University-Level Physics Problem Solving
- URL: http://arxiv.org/abs/2503.21821v1
- Date: Wed, 26 Mar 2025 06:21:56 GMT
- Title: PHYSICS: Benchmarking Foundation Models on University-Level Physics Problem Solving
- Authors: Kaiyue Feng, Yilun Zhao, Yixin Liu, Tianyu Yang, Chen Zhao, John Sous, Arman Cohan,
- Abstract summary: We introduce PHYSICS, a comprehensive benchmark for university-level physics problem solving.<n>It contains 1297 expert-annotated problems covering six core areas: classical mechanics, quantum mechanics, thermodynamics and statistical mechanics, electromagnetism, atomic physics, and optics.
- Score: 38.44445350202585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce PHYSICS, a comprehensive benchmark for university-level physics problem solving. It contains 1297 expert-annotated problems covering six core areas: classical mechanics, quantum mechanics, thermodynamics and statistical mechanics, electromagnetism, atomic physics, and optics. Each problem requires advanced physics knowledge and mathematical reasoning. We develop a robust automated evaluation system for precise and reliable validation. Our evaluation of leading foundation models reveals substantial limitations. Even the most advanced model, o3-mini, achieves only 59.9% accuracy, highlighting significant challenges in solving high-level scientific problems. Through comprehensive error analysis, exploration of diverse prompting strategies, and Retrieval-Augmented Generation (RAG)-based knowledge augmentation, we identify key areas for improvement, laying the foundation for future advancements.
Related papers
- PhysicsEval: Inference-Time Techniques to Improve the Reasoning Proficiency of Large Language Models on Physics Problems [3.0901186959880977]
We evaluate the performance of frontier LLMs in solving physics problems, both mathematical and descriptive.<n>We introduce a new evaluation benchmark for physics problems, $rm Psmall HYSICSEsmall VAL$, consisting of 19,609 problems sourced from various physics textbooks.
arXiv Detail & Related papers (2025-07-31T18:12:51Z) - PhysUniBench: An Undergraduate-Level Physics Reasoning Benchmark for Multimodal Models [69.73115077227969]
We present PhysUniBench, a large-scale benchmark designed to evaluate and improve the reasoning capabilities of large language models (MLLMs)<n>PhysUniBench consists of 3,304 physics questions spanning 8 major sub-disciplines of physics, each accompanied by one visual diagram.<n>The benchmark's construction involved a rigorous multi-stage process, including multiple roll-outs, expert-level evaluation, automated filtering of easily solved problems, and a nuanced difficulty grading system with five levels.
arXiv Detail & Related papers (2025-06-21T09:55:42Z) - Can Theoretical Physics Research Benefit from Language Agents? [50.57057488167844]
Large Language Models (LLMs) are rapidly advancing across diverse domains, yet their application in theoretical physics research is not yet mature.<n>This position paper argues that LLM agents can potentially help accelerate theoretical, computational, and applied physics when properly integrated with domain knowledge and toolbox.<n>We envision future physics-specialized LLMs that could handle multimodal data, propose testable hypotheses, and design experiments.
arXiv Detail & Related papers (2025-06-06T16:20:06Z) - SeePhys: Does Seeing Help Thinking? -- Benchmarking Vision-Based Physics Reasoning [89.48883747910448]
We present SeePhys, a large-scale multimodal benchmark for reasoning grounded in physics questions.<n>The benchmark covers 7 fundamental domains spanning the physics discipline, incorporating 21 categories of highly heterogeneous diagrams.<n>We observe that even the most advanced visual reasoning models (e.g., Gemini-2.5-pro and o4-mini) achieve sub-60% accuracy on our benchmark.
arXiv Detail & Related papers (2025-05-25T11:28:34Z) - Scaling Physical Reasoning with the PHYSICS Dataset [32.956687630330116]
PHYSICS is a dataset containing 16,568 high-quality physics problems spanning subjects and difficulty levels.<n>It covers five major physics domains: Mechanics, Electromagnetism, Thermodynamics, Optics, and Modern Physics.<n>It also spans a wide range of difficulty levels, from high school to graduate-level physics courses.
arXiv Detail & Related papers (2025-05-21T17:06:28Z) - PhysReason: A Comprehensive Benchmark towards Physics-Based Reasoning [36.193595420239845]
We present PhysReason, a 1,200-problem benchmark for evaluating large language models.<n>Problems require an average of 8.1 solution steps, with hard requiring 15.6.<n>Top-performing models like Deepseek-R1, Gemini-2.0-Flash-Thinking, and o3-mini-high achieve less than 60% on answer-level evaluation.
arXiv Detail & Related papers (2025-02-17T17:24:14Z) - UGPhysics: A Comprehensive Benchmark for Undergraduate Physics Reasoning with Large Language Models [39.917074900737575]
Large language models (LLMs) have demonstrated remarkable capabilities in solving complex reasoning tasks.<n>The domain of physics reasoning presents unique challenges that have received significantly less attention.<n>Existing benchmarks often fall short in evaluating LLMs' abilities on the breadth and depth of undergraduate-level physics.
arXiv Detail & Related papers (2025-02-01T06:42:02Z) - Physics Reasoner: Knowledge-Augmented Reasoning for Solving Physics Problems with Large Language Models [41.88825441287559]
Existing large language models (LLMs) frequently fail due to a lack of knowledge or incorrect knowledge application.<n>We propose Physics Reasoner, a knowledge-augmented framework to solve physics problems with LLMs.<n>Given a physics problem, Physics Reasoner solves it through three stages: problem analysis, formula retrieval, and guided reasoning.<n> Empirically, Physics Reasoner mitigates the issues of insufficient knowledge and incorrect application, achieving state-of-the-art performance on SciBench with an average accuracy improvement of 5.8%.
arXiv Detail & Related papers (2024-12-18T12:33:50Z) - SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models [70.5763210869525]
We introduce an expansive benchmark suite SciBench for Large Language Model (LLM)
SciBench contains a dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains.
The results reveal that the current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%.
arXiv Detail & Related papers (2023-07-20T07:01:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.