Can Theoretical Physics Research Benefit from Language Agents?
- URL: http://arxiv.org/abs/2506.06214v1
- Date: Fri, 06 Jun 2025 16:20:06 GMT
- Title: Can Theoretical Physics Research Benefit from Language Agents?
- Authors: Sirui Lu, Zhijing Jin, Terry Jingchen Zhang, Pavel Kos, J. Ignacio Cirac, Bernhard Schölkopf,
- Abstract summary: Large Language Models (LLMs) are rapidly advancing across diverse domains, yet their application in theoretical physics research is not yet mature.<n>This position paper argues that LLM agents can potentially help accelerate theoretical, computational, and applied physics when properly integrated with domain knowledge and toolbox.<n>We envision future physics-specialized LLMs that could handle multimodal data, propose testable hypotheses, and design experiments.
- Score: 50.57057488167844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are rapidly advancing across diverse domains, yet their application in theoretical physics research is not yet mature. This position paper argues that LLM agents can potentially help accelerate theoretical, computational, and applied physics when properly integrated with domain knowledge and toolbox. We analyze current LLM capabilities for physics -- from mathematical reasoning to code generation -- identifying critical gaps in physical intuition, constraint satisfaction, and reliable reasoning. We envision future physics-specialized LLMs that could handle multimodal data, propose testable hypotheses, and design experiments. Realizing this vision requires addressing fundamental challenges: ensuring physical consistency, and developing robust verification methods. We call for collaborative efforts between physics and AI communities to help advance scientific discovery in physics.
Related papers
- PhysicsEval: Inference-Time Techniques to Improve the Reasoning Proficiency of Large Language Models on Physics Problems [3.0901186959880977]
We evaluate the performance of frontier LLMs in solving physics problems, both mathematical and descriptive.<n>We introduce a new evaluation benchmark for physics problems, $rm Psmall HYSICSEsmall VAL$, consisting of 19,609 problems sourced from various physics textbooks.
arXiv Detail & Related papers (2025-07-31T18:12:51Z) - PhysUniBench: An Undergraduate-Level Physics Reasoning Benchmark for Multimodal Models [69.73115077227969]
We present PhysUniBench, a large-scale benchmark designed to evaluate and improve the reasoning capabilities of large language models (MLLMs)<n>PhysUniBench consists of 3,304 physics questions spanning 8 major sub-disciplines of physics, each accompanied by one visual diagram.<n>The benchmark's construction involved a rigorous multi-stage process, including multiple roll-outs, expert-level evaluation, automated filtering of easily solved problems, and a nuanced difficulty grading system with five levels.
arXiv Detail & Related papers (2025-06-21T09:55:42Z) - PhySense: Principle-Based Physics Reasoning Benchmarking for Large Language Models [9.097623284579836]
Large language models (LLMs) have rapidly advanced and are increasingly capable of tackling complex scientific problems.<n>This discrepancy highlights a crucial gap in their ability to apply core physical principles for efficient and interpretable problem solving.<n>We introduce PhySense, a novel principle-based physics reasoning benchmark designed to be easily solvable by experts using guiding principles.
arXiv Detail & Related papers (2025-05-30T17:25:20Z) - PhysicsArena: The First Multimodal Physics Reasoning Benchmark Exploring Variable, Process, and Solution Dimensions [9.428916253383402]
PhysicsArena aims to provide a comprehensive platform for assessing and advancing the multimodal physics reasoning abilities of MLLMs.<n> MLLMs have demonstrated remarkable capabilities in diverse reasoning tasks, yet their application to complex physics reasoning remains underexplored.
arXiv Detail & Related papers (2025-05-21T12:48:16Z) - Position: Multimodal Large Language Models Can Significantly Advance Scientific Reasoning [51.11965014462375]
Multimodal Large Language Models (MLLMs) integrate text, images, and other modalities.<n>This paper argues that MLLMs can significantly advance scientific reasoning across disciplines such as mathematics, physics, chemistry, and biology.
arXiv Detail & Related papers (2025-02-05T04:05:27Z) - Large Physics Models: Towards a collaborative approach with Large Language Models and Foundation Models [8.320153035338418]
This paper explores ideas and provides a potential roadmap for the development and evaluation of physics-specific large-scale AI models.<n>These models, based on foundation models such as Large Language Models (LLMs) are tailored to address the demands of physics research.
arXiv Detail & Related papers (2025-01-09T17:11:22Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
We propose to enhance the knowledge-driven, abstract reasoning abilities of Large Language Models with the computational strength of simulations.
We introduce Scientific Generative Agent (SGA), a bilevel optimization framework.
We conduct experiments to demonstrate our framework's efficacy in law discovery and molecular design.
arXiv Detail & Related papers (2024-05-16T03:04:10Z) - SimLM: Can Language Models Infer Parameters of Physical Systems? [56.38608628187024]
We investigate the performance of Large Language Models (LLMs) at performing parameter inference in the context of physical systems.
Our experiments suggest that they are not inherently suited to this task, even for simple systems.
We propose a promising direction of exploration, which involves the use of physical simulators to augment the context of LLMs.
arXiv Detail & Related papers (2023-12-21T12:05:19Z) - Physics simulation capabilities of LLMs [0.0]
Large Language Models (LLMs) can solve some undergraduate-level to graduate-level physics textbook problems and are proficient at coding.
We present an evaluation of state-of-the-art (SOTA) LLMs on PhD-level to research-level computational physics problems.
arXiv Detail & Related papers (2023-12-04T18:06:41Z) - Physics Embedded Machine Learning for Electromagnetic Data Imaging [83.27424953663986]
Electromagnetic (EM) imaging is widely applied in sensing for security, biomedicine, geophysics, and various industries.
It is an ill-posed inverse problem whose solution is usually computationally expensive. Machine learning (ML) techniques and especially deep learning (DL) show potential in fast and accurate imaging.
This article surveys various schemes to incorporate physics in learning-based EM imaging.
arXiv Detail & Related papers (2022-07-26T02:10:15Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
Digital quantum computers (DQCs) can efficiently perform quantum simulations that are otherwise intractable on classical computers.
The aim of this review is to provide a summary of progress made towards achieving physical quantum advantage.
arXiv Detail & Related papers (2021-01-21T20:10:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.