PyUAT: Open-source Python framework for efficient and scalable cell tracking
- URL: http://arxiv.org/abs/2503.21914v1
- Date: Thu, 27 Mar 2025 18:43:08 GMT
- Title: PyUAT: Open-source Python framework for efficient and scalable cell tracking
- Authors: Johannes Seiffarth, Katharina Nöh,
- Abstract summary: PyUAT is an efficient and modular Python implementation for tracking microbial cells in time-lapse imaging.<n>We demonstrate its performance on a large 2D+t data set and investigate the influence of modular biological models and imaging intervals on the tracking performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tracking individual cells in live-cell imaging provides fundamental insights, inevitable for studying causes and consequences of phenotypic heterogeneity, responses to changing environmental conditions or stressors. Microbial cell tracking, characterized by stochastic cell movements and frequent cell divisions, remains a challenging task when imaging frame rates must be limited to avoid counterfactual results. A promising way to overcome this limitation is uncertainty-aware tracking (UAT), which uses statistical models, calibrated to empirically observed cell behavior, to predict likely cell associations. We present PyUAT, an efficient and modular Python implementation of UAT for tracking microbial cells in time-lapse imaging. We demonstrate its performance on a large 2D+t data set and investigate the influence of modular biological models and imaging intervals on the tracking performance. The open-source PyUAT software is available at https://github.com/JuBiotech/PyUAT, including example notebooks for immediate use in Google Colab.
Related papers
- Cell as Point: One-Stage Framework for Efficient Cell Tracking [54.19259129722988]
We propose a novel end-to-end one-stage framework that reimagines cell tracking by treating Cell as Point.<n>Unlike traditional methods, CAP eliminates the need for explicit detection or segmentation, instead jointly tracking cells for sequences in one stage.<n> CAP demonstrates promising cell tracking performance and is 10 to 55 times more efficient than existing methods.
arXiv Detail & Related papers (2024-11-22T10:16:35Z) - Tracking one-in-a-million: Large-scale benchmark for microbial single-cell tracking with experiment-aware robustness metrics [0.0]
We present the largest publicly available and annotated dataset for microbial live-cell imaging (MLCI)
This dataset contains more than 1.4 million cell instances, 29k cell tracks, and 14k cell divisions.
Our new benchmark quantifies the influence of experiment parameters on the tracking quality, and gives the opportunity to develop new data-driven methods.
arXiv Detail & Related papers (2024-11-01T13:03:51Z) - Contrastive learning of cell state dynamics in response to perturbations [0.5665024011188763]
DynaCLR is a framework for modeling cell dynamics via contrastive learning of representations of time-lapse datasets.
We show how DynaCLR can be used to map the morphological dynamics of cells to a temporally regularized embedding space.
arXiv Detail & Related papers (2024-10-15T05:01:25Z) - Multi-Modal and Multi-Attribute Generation of Single Cells with CFGen [76.02070962797794]
This work introduces CellFlow for Generation (CFGen), a flow-based conditional generative model that preserves the inherent discreteness of single-cell data.
CFGen generates whole-genome multi-modal single-cell data reliably, improving the recovery of crucial biological data characteristics.
arXiv Detail & Related papers (2024-07-16T14:05:03Z) - Deep Temporal Sequence Classification and Mathematical Modeling for Cell Tracking in Dense 3D Microscopy Videos of Bacterial Biofilms [18.563062576080704]
We introduce a novel cell tracking algorithm named DenseTrack.
DenseTrack integrates deep learning with mathematical model-based strategies to establish correspondences between consecutive frames.
We present an eigendecomposition-based cell division detection strategy.
arXiv Detail & Related papers (2024-06-27T23:26:57Z) - RigLSTM: Recurrent Independent Grid LSTM for Generalizable Sequence
Learning [75.61681328968714]
We propose recurrent independent Grid LSTM (RigLSTM) to exploit the underlying modular structure of the target task.
Our model adopts cell selection, input feature selection, hidden state selection, and soft state updating to achieve a better generalization ability.
arXiv Detail & Related papers (2023-11-03T07:40:06Z) - PhagoStat a scalable and interpretable end to end framework for
efficient quantification of cell phagocytosis in neurodegenerative disease
studies [0.0]
We introduce an end-to-end, scalable, and versatile real-time framework for quantifying and analyzing phagocytic activity.
Our proposed pipeline is able to process large data-sets and includes a data quality verification module.
We apply our pipeline to analyze microglial cell phagocytosis in FTD and obtain statistically reliable results.
arXiv Detail & Related papers (2023-04-26T18:10:35Z) - Cell tracking for live-cell microscopy using an activity-prioritized
assignment strategy [0.9134244356393666]
Cell tracking is an essential tool in live-cell imaging to determine single-cell features, such as division patterns or elongation rates.
In microbial live-cell experiments cells are growing, moving, and dividing over time, to form cell colonies that are densely packed in mono-layer structures.
We propose a fast-prioritized cell tracking approach, which consists of activity-prioritized nearest neighbor assignment of growing cells and a solver that assigns splitting mother cells to their daughters.
arXiv Detail & Related papers (2022-10-20T17:40:31Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
We propose a new framework for statistical machine learning of target functions arising as identifiable functionals from statistical models.
This framework is problem- and model-agnostic and can be used to estimate a broad variety of target parameters of interest in applied statistics.
We put particular focus on so-called coarsening at random/doubly robust problems with partially unobserved information.
arXiv Detail & Related papers (2020-08-14T16:48:29Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.