Information Theoretic One-Time Programs from Geometrically Local $\text{QNC}_0$ Adversaries
- URL: http://arxiv.org/abs/2503.22016v2
- Date: Mon, 31 Mar 2025 02:28:39 GMT
- Title: Information Theoretic One-Time Programs from Geometrically Local $\text{QNC}_0$ Adversaries
- Authors: Lev Stambler,
- Abstract summary: We build one-time memories from random linear codes and quantum random access codes (QRACs)<n>We place no restrictions on the adversary's classical computational power, number of qubits it can use, or the coherence time of its qubits.<n>We leave open the question of whether one can construct a time information theoretically secure one-time memory from geometrically local quantum circuits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show how to construct simulation secure one-time memories, and thus one-time programs, without computational assumptions in the presence of constraints on quantum hardware. Specifically, we build one-time memories from random linear codes and quantum random access codes (QRACs) when constrained to non-adaptive, constant depth, and $D$-dimensional geometrically-local quantum circuit for some constant $D$. We place no restrictions on the adversary's classical computational power, number of qubits it can use, or the coherence time of its qubits. Notably, our construction can still be secure even in the presence of fault tolerant quantum computation as long as the input qubits are encoded in a non-fault tolerant manner (e.g. encoded as high energy states in non-ideal hardware). Unfortunately though, our construction requires decoding random linear codes and thus does not run in polynomial time. We leave open the question of whether one can construct a polynomial time information theoretically secure one-time memory from geometrically local quantum circuits. Of potentially independent interest, we develop a progress bound for information leakage via collision entropy (Renyi entropy of order $2$) along with a few key technical lemmas for a "mutual information" for collision entropies. We also develop new bounds on how much information a specific $2 \mapsto 1$ QRAC can leak about its input, which may be of independent interest as well.
Related papers
- Binary Tree Block Encoding of Classical Matrix [6.334095794072344]
Block-encoding is a critical computation in quantum computing.
Our protocol is named Binary Tree Block-encoding (textttBITBLE)
arXiv Detail & Related papers (2025-04-08T02:53:43Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Fundamental causal bounds of quantum random access memories [13.19534468575575]
We study the intrinsic bounds of rapid quantum memories based on causality.
We show that QRAM can accommodate up to $mathcalO(107)$ logical qubits in 1 dimension, $mathcalO(1015)$ to $mathcalO(1020)$ in various 2D architectures, and $mathcalO(1024)$ in 3 dimensions.
arXiv Detail & Related papers (2023-07-25T12:40:48Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation.
For some problems, the ability to perform adaptive measurements in a single shallow quantum circuit is more useful than the ability to perform many shallow quantum circuits without adaptive measurements.
arXiv Detail & Related papers (2022-10-12T17:54:02Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
We show that any $Theta(n)$-depth circuit can be prepared with a $Theta(log(nd)) with $O(ndlog d)$ ancillary qubits.
We discuss applications of the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems of equations, and realizing quantum random access memories.
arXiv Detail & Related papers (2022-01-27T13:16:30Z) - Oracle separations of hybrid quantum-classical circuits [68.96380145211093]
Two models of quantum computation: CQ_d and QC_d.
CQ_d captures the scenario of a d-depth quantum computer many times; QC_d is more analogous to measurement-based quantum computation.
We show that, despite the similarities between CQ_d and QC_d, the two models are intrinsically, i.e. CQ_d $nsubseteq$ QC_d and QC_d $nsubseteq$ CQ_d relative to an oracle.
arXiv Detail & Related papers (2022-01-06T03:10:53Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Long-Time Error-Mitigating Simulation of Open Quantum Systems on Near Term Quantum Computers [38.860468003121404]
We study an open quantum system simulation on quantum hardware, which demonstrates robustness to hardware errors even with deep circuits containing up to two thousand entangling gates.
We simulate two systems of electrons coupled to an infinite thermal bath: 1) a system of dissipative free electrons in a driving electric field; and 2) the thermalization of two interacting electrons in a single orbital in a magnetic field -- the Hubbard atom.
Our results demonstrate that algorithms for simulating open quantum systems are able to far outperform similarly complex non-dissipative algorithms on noisy hardware.
arXiv Detail & Related papers (2021-08-02T21:36:37Z) - Implementing a Fast Unbounded Quantum Fanout Gate Using Power-Law
Interactions [0.9634136878988853]
Power-law interactions with strength decaying as $1/ralpha$ in the distance provide an experimentally realizable resource for information processing.
We leverage the power of these interactions to implement a fast quantum fanout gate with an arbitrary number of targets.
We show that power-law systems with $alpha le D$ are difficult to simulate classically even for short times, under a standard assumption that factoring is classically intractable.
arXiv Detail & Related papers (2020-07-01T18:00:00Z) - Post-Quantum Multi-Party Computation [32.75732860329838]
We study multi-party computation for classical functionalities (in the plain model) with security against malicious-time quantum adversaries.
We assume superpolynomial quantum hardness of learning with errors (LWE), and quantum hardness of an LWE-based circular security assumption.
Along the way, we develop cryptographic primitives that may be of independent interest.
arXiv Detail & Related papers (2020-05-23T00:42:52Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.