論文の概要: Estimating City-wide operating mode Distribution of Light-Duty Vehicles: A Neural Network-based Approach
- arxiv url: http://arxiv.org/abs/2503.22118v1
- Date: Fri, 28 Mar 2025 03:43:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:28:45.139069
- Title: Estimating City-wide operating mode Distribution of Light-Duty Vehicles: A Neural Network-based Approach
- Title(参考訳): 軽自動車の都市全体の運転モード分布の推定:ニューラルネットワークによるアプローチ
- Authors: Muhammad Usama, Haris N. Koutsopoulos, Zhengbing He, Lijiao Wang,
- Abstract要約: 本稿では,動作モード分布を推定するモジュール型ニューラルネットワーク(NN)に基づくフレームワークを提案する。
アメリカ合衆国ブルックラインMAのよく校正されたマイクロシミュレーションモデルを用いて検証した。
提案手法は, 迅速かつ正確な排出推定を行うことにより, リアルタイムの排出監視に利用することができる。
- 参考スコア(独自算出の注目度): 9.412151450938504
- License:
- Abstract: Driving cycles are a set of driving conditions and are crucial for the existing emission estimation model to evaluate vehicle performance, fuel efficiency, and emissions, by matching them with average speed to calculate the operating modes, such as braking, idling, and cruising. While existing emission estimation models, such as the Motor Vehicle Emission Simulator (MOVES), are powerful tools, their reliance on predefined driving cycles can be limiting, as these cycles often do not accurately represent regional driving conditions, making the models less effective for city-wide analyses. To solve this problem, this paper proposes a modular neural network (NN)-based framework to estimate operating mode distributions bypassing the driving cycle development phase, utilizing macroscopic variables such as speed, flow, and link infrastructure attributes. The proposed method is validated using a well-calibrated microsimulation model of Brookline MA, the United States. The results indicate that the proposed framework outperforms the operating mode distribution calculated by MOVES based on default driving cycles, providing a closer match to the actual operating mode distribution derived from trajectory data. Specifically, the proposed model achieves an average RMSE of 0.04 in predicting operating mode distribution, compared to 0.08 for MOVES. The average error in emission estimation across pollutants is 8.57% for the proposed method, lower than the 32.86% error for MOVES. In particular, for the estimation of CO2, the proposed method has an error of just 4%, compared to 35% for MOVES. The proposed model can be utilized for real-time emissions monitoring by providing rapid and accurate emissions estimates with easily accessible inputs.
- Abstract(参考訳): 運転サイクルは運転条件のセットであり、ブレーキ、アイドリング、クルーズなどの運転モードを計算するために、車両の性能、燃費、排気量を評価するために既存の排出推定モデルにとって不可欠である。
自動車排出シミュレーション(MOVES)のような既存の排出予測モデルは強力なツールであるが、これらのサイクルは地域運転条件を正確に表現しないため、事前に定義された運転サイクルへの依存が制限され、都市全体の分析には効果が低い。
そこで本稿では, 速度, フロー, リンクインフラストラクチャ特性などのマクロ変数を利用して, 駆動サイクル開発フェーズを通過させることにより, 動作モード分布を推定する, モジュール型ニューラルネットワーク(NN)ベースのフレームワークを提案する。
提案手法は, アメリカ合衆国ブルックラインMAのマイクロシミュレーションモデルを用いて検証した。
その結果,提案フレームワークは,MOVESが計算した動作モード分布を既定の駆動サイクルに基づいて上回り,軌道データから導出される実際の動作モード分布と密に一致していることが示唆された。
具体的には,MOVES では 0.08 に対して,平均 RMSE は 0.04 である。
汚染物質の排出推定における平均誤差は提案手法の8.57%であり、MOVESの32.86%の誤差よりも低い。
特にCO2推定では,MOVESの35%に対して,提案手法の誤差は4%に過ぎなかった。
提案手法は, 高速かつ高精度な排出推定を行うことにより, リアルタイムな排出監視に利用することができる。
関連論文リスト
- FlowTS: Time Series Generation via Rectified Flow [67.41208519939626]
FlowTSは、確率空間における直線輸送を伴う整流フローを利用するODEベースのモデルである。
非条件設定では、FlowTSは最先端のパフォーマンスを達成し、コンテキストFIDスコアはStockとETThデータセットで0.019と0.011である。
条件設定では、太陽予測において優れた性能を達成している。
論文 参考訳(メタデータ) (2024-11-12T03:03:23Z) - Efficient and Robust Freeway Traffic Speed Estimation under Oblique Grid using Vehicle Trajectory Data [19.01488741469791]
斜め交通速度を正確に推定するための効率的でロバストな低ランクモデルを提案する。
提案手法は,TSEシナリオにおけるルート平均角誤差(RMSE)を最大12%改善する。
最先端のSOTA(State-of-the-art)メソッドよりも20倍以上高速に動作します。
論文 参考訳(メタデータ) (2024-11-06T15:13:40Z) - Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation [49.49868273653921]
拡散モデルは、自律運転における共同軌道予測と制御可能な生成を約束する。
最適ガウス拡散(OGD)と推定クリーンマニフォールド(ECM)誘導を導入する。
提案手法は生成過程の合理化を図り,計算オーバーヘッドを低減した実用的な応用を実現する。
論文 参考訳(メタデータ) (2024-08-01T17:59:59Z) - Urban Traffic Forecasting with Integrated Travel Time and Data Availability in a Conformal Graph Neural Network Framework [0.6554326244334868]
最先端のモデルは、可能な限り最良の方法でデータを考えるのに苦労することが多い。
本稿では,駅間の移動時間をグラフニューラルネットワークアーキテクチャの重み付き隣接行列に組み込む新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-07-17T01:11:07Z) - A Tricycle Model to Accurately Control an Autonomous Racecar with Locked
Differential [71.53284767149685]
自動オープンホイールレースカーの側面力学に対するロックディファレンシャルの影響をモデル化するための新しい定式化を提案する。
本稿では,マイクロステップの離散化手法を用いて,動的に線形化し,実時間実装に適した予測を行う。
論文 参考訳(メタデータ) (2023-12-22T16:29:55Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Rapid Assessments of Light-Duty Gasoline Vehicle Emissions Using On-Road
Remote Sensing and Machine Learning [18.334974501482275]
道路上での自動車排ガスのリアルタイムかつ正確な評価は、都市大気の質と健康政策において中心的な役割を果たす。
ここでは、オンロードリモートセンシング(ORRS)測定をI/Mレコードに関連付ける103831光デューティガソリン車を含む、ユニークなデータセットを構築します。
ニューラルネットワーク(NN)、極勾配強化(XGBoost)、ランダムフォレスト(ランダムフォレスト)を含む3つの機械学習アルゴリズムを統合するアンサンブルモデルフレームワークを開発した。
論文 参考訳(メタデータ) (2021-10-01T08:37:06Z) - Predictive and Prescriptive Performance of Bike-Sharing Demand Forecasts
for Inventory Management [8.441020454345932]
本稿では,ポアソン繰り返しニューラルネットワークモデル(VP-RNN)を導入し,今後のピックアップとリターン率を予測する。
本稿は,米国ニューヨーク市からの実旅行データに対する従来の予測手法と学習に基づく予測手法の両方に対するアプローチを実証的に評価する。
論文 参考訳(メタデータ) (2021-07-28T14:11:34Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - Data-Driven Intersection Management Solutions for Mixed Traffic of
Human-Driven and Connected and Automated Vehicles [0.0]
この論文は、コネクテッドカーとオートマチックカーの存在下での都市交通制御のための2つの解決策を提案する。
まず, 協調的交差点管理問題に対して, 集中型小隊制御器を提案する。
第二に,コネクテッドカーの存在下での適応信号制御のためのデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T01:44:45Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
トレーニング外の配布(OOD)シナリオは、デプロイ時にエージェントを学ぶ上で一般的な課題である。
インプロバスト模倣計画(RIP)と呼ばれる不確実性を考慮した計画手法を提案する。
提案手法は,OODシーンにおける過信および破滅的な外挿を低減し,分布変化を検知し,回復することができる。
分散シフトを伴うタスク群に対する駆動エージェントのロバスト性を評価するために,自動走行車ノベルシーンベンチマークであるtexttCARNOVEL を導入する。
論文 参考訳(メタデータ) (2020-06-26T11:07:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。