論文の概要: Data-Free Universal Attack by Exploiting the Intrinsic Vulnerability of Deep Models
- arxiv url: http://arxiv.org/abs/2503.22205v1
- Date: Fri, 28 Mar 2025 07:48:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:32:05.898211
- Title: Data-Free Universal Attack by Exploiting the Intrinsic Vulnerability of Deep Models
- Title(参考訳): 深部モデルの本質的脆弱性の爆発によるデータフリーユニバーサルアタック
- Authors: YangTian Yan, Jinyu Tian,
- Abstract要約: ディープニューラルネットワーク(DNN)は、ユニバーサル・ディバイサル摂動(UAP)に影響を受けやすい
Intrinsic UAP(IntriUAP)と呼ばれる新しいデータフリー手法を提案する。
本手法は,画像サンプルを使わずに,一般的な画像分類深度モデルを攻撃する上で,高い競争力を発揮する。
- 参考スコア(独自算出の注目度): 8.053186346076743
- License:
- Abstract: Deep neural networks (DNNs) are susceptible to Universal Adversarial Perturbations (UAPs), which are instance agnostic perturbations that can deceive a target model across a wide range of samples. Unlike instance-specific adversarial examples, UAPs present a greater challenge as they must generalize across different samples and models. Generating UAPs typically requires access to numerous examples, which is a strong assumption in real-world tasks. In this paper, we propose a novel data-free method called Intrinsic UAP (IntriUAP), by exploiting the intrinsic vulnerabilities of deep models. We analyze a series of popular deep models composed of linear and nonlinear layers with a Lipschitz constant of 1, revealing that the vulnerability of these models is predominantly influenced by their linear components. Based on this observation, we leverage the ill-conditioned nature of the linear components by aligning the UAP with the right singular vectors corresponding to the maximum singular value of each linear layer. Remarkably, our method achieves highly competitive performance in attacking popular image classification deep models without using any image samples. We also evaluate the black-box attack performance of our method, showing that it matches the state-of-the-art baseline for data-free methods on models that conform to our theoretical framework. Beyond the data-free assumption, IntriUAP also operates under a weaker assumption, where the adversary only can access a few of the victim model's layers. Experiments demonstrate that the attack success rate decreases by only 4% when the adversary has access to just 50% of the linear layers in the victim model.
- Abstract(参考訳): ディープニューラルネットワーク(Deep Neural Network, DNN)は、幅広いサンプルを対象モデルとみなすような、インスタンス非依存の摂動であるユニバーサル・アディバーショナル摂動(Universal Adversarial Perturbations, UAP)に感受性がある。
インスタンス固有の敵の例とは異なり、UPAは異なるサンプルやモデルにまたがって一般化する必要があるため、より大きな課題を示す。
UAPを生成するには、多くの例にアクセスする必要があるが、これは現実世界のタスクにおいて強い仮定である。
本稿では,深層モデルの本質的な脆弱性を生かして,Intrinsic UAP(IntriUAP)と呼ばれる新しいデータフリー手法を提案する。
リプシッツ定数1の線形層と非線形層からなる一連の人気深層モデルを分析し、これらのモデルの脆弱性はそれらの線形成分に大きく影響されていることを示した。
この観測に基づき,各線形層の最大特異値に対応する右特異ベクトルとUAPを整列させることにより,線形成分の不条件の性質を利用する。
また,本手法は画像サンプルを使わずに,画像分類深層モデルに対する攻撃において高い競争力を発揮する。
また,提案手法のブラックボックス攻撃性能を評価し,理論的枠組みに準拠したモデル上でのデータフリー手法の最先端のベースラインと一致することを示す。
データフリーな仮定の他に、IntriUAPはより弱い仮定の下でも動作する。
実験により、攻撃成功率は、敵が犠牲者モデルの直線層の50%にしかアクセスできない場合にわずか4%減少することが示された。
関連論文リスト
- Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
本稿では,セグメント・アプライス・モデル(SAM)から微調整した様々な下流モデルに対する敵攻撃の可能性について検討する。
未知のデータセットを微調整したモデルに対する敵攻撃の有効性を高めるために,ユニバーサルメタ初期化(UMI)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-26T15:04:04Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) は、入力データを歪ませることで、トレーニングされたニューラルネットワークの堅牢性をテストするために使用される。
本稿では, 自己教師型, 計算的経済的な手法を用いて, 対逆例を生成する手法を提案する。
我々の実験は、この手法が様々なモデル、目に見えないデータカテゴリ、さらには防御されたモデルで有効であることを一貫して実証している。
論文 参考訳(メタデータ) (2023-10-05T17:34:47Z) - Advancing Adversarial Robustness Through Adversarial Logit Update [10.041289551532804]
敵の訓練と敵の浄化は最も広く認知されている防衛戦略の一つである。
そこで本稿では,新たな原則であるALU(Adversarial Logit Update)を提案する。
本手法は,幅広い敵攻撃に対する最先端手法と比較して,優れた性能を実現する。
論文 参考訳(メタデータ) (2023-08-29T07:13:31Z) - Layer-wise Linear Mode Connectivity [52.6945036534469]
ニューラルネットワークパラメータの平均化は、2つの独立したモデルの知識の直感的な方法である。
フェデレートラーニングにおいて最も顕著に用いられている。
私たちは、単一グループやグループを平均化するモデルの性能を分析します。
論文 参考訳(メタデータ) (2023-07-13T09:39:10Z) - Towards Generating Adversarial Examples on Mixed-type Data [32.41305735919529]
そこで本研究では,M-Attackを用いた攻撃アルゴリズムを提案する。
M-Attackをベースとした攻撃者は、与えられたデータサンプルの数値的特徴と分類的特徴の両方をわずかに摂動させることで、ターゲットの分類モデルの予測を誤解させようとする。
我々の生成した敵の例は潜在的な検出モデルを避けることができるため、攻撃は本当に惨めである。
論文 参考訳(メタデータ) (2022-10-17T20:17:21Z) - Adversarial Robustness Assessment of NeuroEvolution Approaches [1.237556184089774]
CIFAR-10画像分類タスクにおける2つのNeuroEvolutionアプローチにより得られたモデルのロバスト性を評価する。
以上の結果から,進化したモデルが反復的手法で攻撃されると,その精度は通常0に低下するか0に近づきます。
これらの技法のいくつかは、元の入力に付加された摂動を悪化させ、頑丈さを損なう可能性がある。
論文 参考訳(メタデータ) (2022-07-12T10:40:19Z) - Unreasonable Effectiveness of Last Hidden Layer Activations [0.5156484100374058]
本研究では, 高い温度値を持つモデルの出力層で広く知られているアクティベーション関数を用いることで, 標的および標的外攻撃事例の勾配をゼロにする効果が示された。
CIFAR10データセットであるMNIST(Digit)に対するアプローチの有効性を実験的に検証した。
論文 参考訳(メタデータ) (2022-02-15T12:02:59Z) - Self-Damaging Contrastive Learning [92.34124578823977]
ラベルのないデータは一般に不均衡であり、長い尾の分布を示す。
本稿では,クラスを知らずに表現学習を自動的にバランスをとるための,自己学習コントラスト学習という原則的枠組みを提案する。
実験の結果,SDCLRは全体としての精度だけでなく,バランス性も著しく向上することがわかった。
論文 参考訳(メタデータ) (2021-06-06T00:04:49Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。