Data-driven modeling of fluid flow around rotating structures with graph neural networks
- URL: http://arxiv.org/abs/2503.22252v1
- Date: Fri, 28 Mar 2025 09:06:19 GMT
- Title: Data-driven modeling of fluid flow around rotating structures with graph neural networks
- Authors: Rui Gao, Zhi Cheng, Rajeev K. Jaiman,
- Abstract summary: We propose to apply a graph neural network-based surrogate modeling for fluid flow with the mesh corotating with the structure.<n>Unlike conventional data-driven approaches that rely on structured Cartesian meshes, our framework operates on unstructured co-rotating meshes.<n>Our results show that the model achieves stable and accurate rollouts for over 2000 time steps in periodic regimes.
- Score: 12.295701458215401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks, recently introduced into the field of fluid flow surrogate modeling, have been successfully applied to model the temporal evolution of various fluid flow systems. Existing applications, however, are mostly restricted to cases where the domain is time-invariant. The present work extends the application of graph neural network-based modeling to fluid flow around structures rotating with respect to a certain axis. Specifically, we propose to apply a graph neural network-based surrogate modeling for fluid flow with the mesh corotating with the structure. Unlike conventional data-driven approaches that rely on structured Cartesian meshes, our framework operates on unstructured co-rotating meshes, enforcing rotation equivariance of the learned model by leveraging co-rotating polar (2D) and cylindrical (3D) coordinate systems. To model the pressure for systems without Dirichlet pressure boundaries, we propose a novel local directed pressure difference formulation that is invariant to the reference pressure point and value. For flow systems with large mesh sizes, we introduce a scheme to train the network in single or distributed graphics processing units by accumulating the backpropagated gradients from partitions of the mesh. The effectiveness of our proposed framework is examined on two test cases: (i) fluid flow in a 2D rotating mixer, and (ii) the flow past a 3D rotating cube. Our results show that the model achieves stable and accurate rollouts for over 2000 time steps in periodic regimes while capturing accurate short-term dynamics in chaotic flow regimes. In addition, the drag and lift force predictions closely match the CFD calculations, highlighting the potential of the framework for modeling both periodic and chaotic fluid flow around rotating structures.
Related papers
- Not-So-Optimal Transport Flows for 3D Point Cloud Generation [58.164908756416615]
Learning generative models of 3D point clouds is one of the fundamental problems in 3D generative learning.<n>In this paper, we analyze the recently proposed equivariant OT flows that learn permutation invariant generative models for point-based molecular data.<n>We show that our proposed model outperforms prior diffusion- and flow-based approaches on a wide range of unconditional generation and shape completion.
arXiv Detail & Related papers (2025-02-18T02:37:34Z) - Learning Effective Dynamics across Spatio-Temporal Scales of Complex Flows [4.798951413107239]
We propose a novel framework, Graph-based Learning of Effective Dynamics (Graph-LED), that leverages graph neural networks (GNNs) and an attention-based autoregressive model.<n>We evaluate the proposed approach on a suite of fluid dynamics problems, including flow past a cylinder and flow over a backward-facing step over a range of Reynolds numbers.
arXiv Detail & Related papers (2025-02-11T22:14:30Z) - A Geometry-Aware Message Passing Neural Network for Modeling Aerodynamics over Airfoils [61.60175086194333]
aerodynamics is a key problem in aerospace engineering, often involving flows interacting with solid objects such as airfoils.<n>Here, we consider modeling of incompressible flows over solid objects, wherein geometric structures are a key factor in determining aerodynamics.<n>To effectively incorporate geometries, we propose a message passing scheme that efficiently and expressively integrates the airfoil shape with the mesh representation.<n>These design choices lead to a purely data-driven machine learning framework known as GeoMPNN, which won the Best Student Submission award at the NeurIPS 2024 ML4CFD Competition, placing 4th overall.
arXiv Detail & Related papers (2024-12-12T16:05:39Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Data-driven low-dimensional dynamic model of Kolmogorov flow [0.0]
Reduced order models (ROMs) that capture flow dynamics are of interest for decreasing computational costs for simulation.
This work presents a data-driven framework for minimal-dimensional models that effectively capture the dynamics and properties of the flow.
We apply this to Kolmogorov flow in a regime consisting of chaotic and intermittent behavior.
arXiv Detail & Related papers (2022-10-29T23:05:39Z) - Predicting fluid-structure interaction with graph neural networks [13.567118450260178]
We present a rotation equivariant, quasi-monolithic graph neural network framework for the reduced-order modeling of fluid-structure interaction systems.
A finite element-inspired hypergraph neural network is employed to predict the evolution of the fluid state based on the state of the whole system.
The proposed framework tracks the interface description and provides stable and accurate system state predictions during roll-out for at least 2000 time steps.
arXiv Detail & Related papers (2022-10-09T07:42:23Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Predicting Physics in Mesh-reduced Space with Temporal Attention [15.054026802351146]
We propose a new method that captures long-term dependencies through a transformer-style temporal attention model.
Our method outperforms a competitive GNN baseline on several complex fluid dynamics prediction tasks.
We believe our approach paves the way to bringing the benefits of attention-based sequence models to solving high-dimensional complex physics tasks.
arXiv Detail & Related papers (2022-01-22T18:32:54Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z) - Predicting the flow field in a U-bend with deep neural networks [0.0]
This paper describes a study based on computational fluid dynamics (CFD) and deep neural networks that focusing on predicting the flow field in differently distorted U-shaped pipes.
The main motivation of this work was to get an insight about the justification of the deep learning paradigm in hydrodynamic hull optimisation processes.
arXiv Detail & Related papers (2020-10-01T09:03:02Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.