Husimi phase distribution in non-Gaussian operations
- URL: http://arxiv.org/abs/2503.22298v1
- Date: Fri, 28 Mar 2025 10:22:41 GMT
- Title: Husimi phase distribution in non-Gaussian operations
- Authors: Ramniwas Meena, Chandan Kumar, Subhashish Banerjee,
- Abstract summary: The Husimi phase distribution is investigated for single-mode and two-mode squeezed vacuum states.<n>Non-Gaussian operations are effective tools for localizing phase distribution and enhancing phase robustness in the presence of noise.
- Score: 1.798594109079455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Husimi phase distribution, an experimentally measurable quantity, is investigated for single-mode and two-mode squeezed vacuum states. The analysis highlights that non-Gaussian operations, i.e., photon subtraction (PS), photon addition (PA) and photon catalysis (PC), are effective tools for localizing phase distribution and enhancing phase robustness in the presence of noise, while PC enhances phase sensitivity but leads to greater delocalization. The work highlights the perspective that combined effects of squeezing, beam splitter transmittance, and environmental interactions must be carefully considered when quantum state engineering protocols are designed and phase properties provide a valuable insight into this endeavour.
Related papers
- Phase Dependent Quantum Optical Coherence Tomography [0.0]
Entanglement is a key resource in quantum technologies, enhancing precision and resolution in imaging and sensing.
We show that phase-shifting entangled photon pairs in a Hong-Ou-Mandel interferometer can lead to tangible advancements in quantum sensing and probing.
arXiv Detail & Related papers (2025-03-09T20:58:26Z) - Partial-immunity of two-photon correlation against wavefront distortion for spatially entangled photons [0.0]
High-dimensional quantum entanglement in photons offers notable technological advancements over traditional qubit-based systems.<n>However, such high-dimensional states are vulnerable to disruption by complex disordered media, presenting significant challenges in practical applications.<n>We present a systematic study of the randomization of two-photon correlations caused by arbitrary phase distortions in the far field.
arXiv Detail & Related papers (2024-12-12T13:31:20Z) - Characterising higher-order phase correlations in gain-switched laser sources with application to quantum key distribution [38.00713966087315]
Multi-photon emissions in laser sources represent a serious threat for the security of quantum key distribution.<n>We introduce experimental schemes to characterise the phase probability distribution of the emitted pulses.<n>We demonstrate that an optimisation task over interferometric measures suffices in determining the impact of arbitrary order correlations.
arXiv Detail & Related papers (2024-12-04T22:06:13Z) - Engineering biphoton spectral wavefunction in a silicon micro-ring resonator with split resonances [21.14676162428423]
Control of frequency-time amplitude of a photon's electric field has been demonstrated on platforms with second-order optical nonlinearity.
Here, we demonstrate a cavity-enhanced photon-pair source that can generate both separable states and controllable entangled states.
Experiments and simulations demonstrate the capacity to manipulate the frequency-domain wavefunction in a silicon-based device.
arXiv Detail & Related papers (2024-08-24T14:23:21Z) - Quantum-enhanced joint estimation of phase and phase diffusion [0.25602836891933073]
We investigate the joint estimation of phase and phase diffusion using generalized Holland-Burnett states.
We find that the highest sensitivities are obtained by using states created by directing all input photons into one port of a balanced beam splitter.
arXiv Detail & Related papers (2024-03-07T18:18:34Z) - Photonic cellular automaton simulation of relativistic quantum fields:
observation of Zitterbewegung [33.9160941148077]
Quantum Cellular Automaton (QCA) is a model for universal quantum computation.
We introduce the first photonic platform for implementing QCA-simulation of a free relativistic Dirac quantum field in 1+1 dimension.
arXiv Detail & Related papers (2024-02-12T14:27:32Z) - Optimal non-Gaussian operations in difference-intensity detection and
parity detection-based Mach-Zehnder interferometer [2.305614430520103]
We investigate the benefits of probabilistic non-Gaussian operations in phase estimation using Mach-Zehnder interferometers (MZI)
We consider an experimentally implementable model to perform three different non-Gaussian operations, namely photon subtraction (PS), photon addition (PA), and photon model (PC)
In difference-intensity detection MZI, two PC operation is found to be the most optimal, while for parity detection-based MZI, two PA operation emerges as the most optimal process.
arXiv Detail & Related papers (2023-12-17T17:52:14Z) - Engineering the impact of phonon dephasing on the coherence of a WSe$_{2}$ single-photon source via cavity quantum electrodynamics [36.88715167286119]
Emitter dephasing is one of the key issues in the performance of solid-state single photon sources.
We show that it is possible to tune and engineer the coherence of photons emitted from a single WSe$$ monolayer dot via selectively coupling it to a spectral cavity resonance.
arXiv Detail & Related papers (2023-07-13T16:41:06Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Phase estimation of Mach-Zehnder interferometer via Laguerre excitation
squeezed state [7.488329113191202]
We introduce a kind of non-Gaussian state, Laguerre squeezed excitation state as input of traditional Mach-Zehnder interferometer.
We consider the effects of both internal and external losses on phase estimation by using quantum Fisher information and parity detection.
arXiv Detail & Related papers (2022-09-01T10:14:43Z) - Remote Phase Sensing by Coherent Single Photon Addition [58.720142291102135]
We propose a remote phase sensing scheme inspired by the high sensitivity of the entanglement produced by coherent multimode photon addition on the phase set in the remote heralding apparatus.
We derive the optimal observable to perform remote phase estimation from heralded quadrature measurements.
arXiv Detail & Related papers (2021-08-26T14:52:29Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.