論文の概要: Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
- arxiv url: http://arxiv.org/abs/2503.22353v1
- Date: Fri, 28 Mar 2025 11:49:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 19:09:59.674943
- Title: Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
- Title(参考訳): 企業かフィックルか? シークエンシャルインタラクションにおける大規模言語モデルの整合性の評価
- Authors: Yubo Li, Yidi Miao, Xueying Ding, Ramayya Krishnan, Rema Padman,
- Abstract要約: 大きな言語モデル(LLM)は、様々なタスクにまたがって顕著な能力を示していますが、高い領域への展開には、複数のインタラクションラウンドで一貫したパフォーマンスが必要です。
本稿では,LLM応答整合性の評価と改善のための総合的なフレームワークを紹介し,その3つの重要な貢献について述べる。
- 参考スコア(独自算出の注目度): 8.069858557211132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent performance across multiple interaction rounds. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. First, we propose a novel Position-Weighted Consistency (PWC) score that captures both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by incorporating model confidence signals into the generation process. Empirical results demonstrate that CARG significantly improves response stability without sacrificing accuracy, underscoring its potential for reliable LLM deployment in critical applications.
- Abstract(参考訳): 大きな言語モデル(LLM)は、様々なタスクにまたがって顕著な能力を示していますが、高い領域への展開には、複数のインタラクションラウンドで一貫したパフォーマンスが必要です。
本稿では,LLM応答整合性の評価と改善のための総合的なフレームワークを紹介し,その3つの重要な貢献について述べる。
まず,複数ターン相互作用における初期安定性と回復パターンの重要性を両立させる新しい位置重み付き一貫性(PWC)スコアを提案する。
第2に、様々なドメインと難易度にまたがる注意深く評価されたベンチマークデータセットを提案し、特に、様々な挑戦的なフォローアップシナリオの下でLCMの一貫性を評価するように設計されている。
第3に、モデル信頼信号を生成プロセスに組み込むことで、応答安定性を著しく向上するフレームワークである信頼性対応応答生成(CARG)を導入する。
実験により、CARGは精度を犠牲にすることなく応答安定性を著しく改善し、重要なアプリケーションにおける信頼性LLMの展開の可能性を強調した。
関連論文リスト
- WSM: Decay-Free Learning Rate Schedule via Checkpoint Merging for LLM Pre-training [64.0932926819307]
本稿では,学習速度減衰とモデルマージの正式な関係を確立するフレームワークであるWarmup-Stable and Merge(WSM)を紹介する。
WSMは様々な崩壊戦略をエミュレートするための統一された理論基盤を提供する。
私たちのフレームワークは、複数のベンチマークで広く採用されているWarmup-Stable-Decay(WSD)アプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2025-07-23T16:02:06Z) - Test-Time Consistency in Vision Language Models [26.475993408532304]
VLM(Vision-Language Models)は、様々なマルチモーダルタスクにおいて優れたパフォーマンスを実現している。
MM-R3のような最近のベンチマークでは、最先端のVLMでさえ意味論的に等価な入力にまたがって分岐予測をもたらすことが強調されている。
教師付き再学習なしにセマンティックな一貫性を高める,シンプルで効果的なテスト時間一貫性フレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-27T17:09:44Z) - Learning to Fuse: Modality-Aware Adaptive Scheduling for Robust Multimodal Foundation Models [0.0]
モーダリティ・アウェア・アダプティブ・フュージョン・スケジューリング(MA-AFS)は、各モーダリティの寄与をインスタンス単位で動的に調節することを学ぶ。
本研究は, 適応融合の重要性を強調し, 信頼性と不確実性を考慮したマルチモーダル学習に向けた有望な方向性を開く。
論文 参考訳(メタデータ) (2025-06-15T05:57:45Z) - Understanding and Benchmarking the Trustworthiness in Multimodal LLMs for Video Understanding [59.50808215134678]
この研究では、23の最先端のビデオLLMを評価する最初の総合的なベンチマークであるTrust-videoLLMを紹介した。
その結果、動的シーン理解、クロスモーダルレジリエンス、現実世界のリスク軽減において、大きな制限が示された。
論文 参考訳(メタデータ) (2025-06-14T04:04:54Z) - Seeing is Believing, but How Much? A Comprehensive Analysis of Verbalized Calibration in Vision-Language Models [15.158475816860427]
不確実性は、現代のAIシステムの信頼性と信頼性を評価するために不可欠である。
モデルが自然言語を通して信頼を表現する言語化された不確実性は、軽量で解釈可能なソリューションとして現れています。
しかし、視覚言語モデル(VLM)におけるその効果は未だ十分に研究されていない。
論文 参考訳(メタデータ) (2025-05-26T17:16:36Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,5つのコアパラダイムにまたがるPoLMの進化を体系的に追跡する,最初の包括的調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - SrSv: Integrating Sequential Rollouts with Sequential Value Estimation for Multi-agent Reinforcement Learning [23.032729815716813]
現実世界の環境の複雑さは信用割当問題を悪化させる。
大規模シナリオにおけるエージェント集団の多様性は、スケーラブルな意思決定メカニズムを必要とする。
逐次値推定を用いた逐次ロールアウト(SrSv)を提案する。
論文 参考訳(メタデータ) (2025-03-03T12:17:18Z) - Collective Reasoning Among LLMs A Framework for Answer Validation Without Ground Truth [0.0]
本研究では,モデル間のコンセンサスによって応答信頼性が向上し,生成した質問の質を評価するためのプロキシとして機能することを示す。
本稿では、GPT-4-0125-preview、Meta-LLaMA-3-70B-Instruct、Claude-3-Opus、Gemini-1.5-Flashといった複数の大規模言語モデルを用いて、複雑なPhDレベルの確率問題の生成と応答を行う協調フレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-28T06:20:52Z) - Aligning Large Language Models for Faithful Integrity Against Opposing Argument [71.33552795870544]
大規模言語モデル(LLM)は複雑な推論タスクにおいて印象的な機能を示している。
原文が正しい場合でも、会話中に不誠実な議論によって容易に誤解される。
本稿では,信頼度と信頼度を両立させる新しい枠組みを提案する。
論文 参考訳(メタデータ) (2025-01-02T16:38:21Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
多段階多モーダル推論タスクは、大規模言語モデル(MLLM)に重大な課題をもたらす
本稿では,MLLMの推論能力の向上を目的とした汎用フレームワークAR-MCTSを提案する。
我々は,AR-MCTSがサンプリングの多様性と精度を最適化し,信頼性の高いマルチモーダル推論を実現することを示す。
論文 参考訳(メタデータ) (2024-12-19T13:25:39Z) - Are Your LLMs Capable of Stable Reasoning? [38.03049704515947]
大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著な進歩を示している。
しかし、ベンチマークパフォーマンスと実世界のアプリケーションの間には大きな違いがある。
G-Pass@kはモデルの性能を連続的に評価する新しい評価指標である。
本稿では,挑戦的,現代数学的な問題からなる動的ベンチマークであるLiveMathBenchを紹介する。
論文 参考訳(メタデータ) (2024-12-17T18:12:47Z) - On Adversarial Robustness and Out-of-Distribution Robustness of Large Language Models [0.16874375111244325]
大規模言語モデル(LLM)における対向ロバストネスとOODロバストネスの相関について検討する。
以上の結果より, 対向ロバスト性とOODロバスト性との間にはニュアンスな相互作用がみられ, 移動性に限界があることが示唆された。
これらの相互作用を、より大きなモデルと様々なアーキテクチャにわたって評価するためには、さらなる研究が必要である。
論文 参考訳(メタデータ) (2024-12-13T20:04:25Z) - Evaluating and Advancing Multimodal Large Language Models in Ability Lens [30.083110119139793]
textbfAbilityLensは、6つの重要な知覚能力にまたがるMLLMを評価するために設計された統一ベンチマークである。
現在のモデルの長所と短所を特定し、安定性のパターンを強調し、オープンソースモデルとクローズドソースモデルの顕著なパフォーマンスギャップを明らかにします。
また、早期訓練段階から最高の能力チェックポイントを組み合わせ、能力衝突による性能低下を効果的に軽減する、簡易な能力特異的モデルマージ手法を設計する。
論文 参考訳(メタデータ) (2024-11-22T04:41:20Z) - Reward-Robust RLHF in LLMs [25.31456438114974]
大規模言語モデル(LLM)は、より高度なインテリジェンスへと進化を続けている。
報酬モデルに基づく(RMに基づく)アライメント手法への依存は、大きな課題をもたらす。
本稿では,これらの課題に対処することを目的とした報酬損耗型RLHFフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-18T02:35:41Z) - MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset [50.36095192314595]
大きな言語モデル(LLM)は、一般化可能な推論能力を持つ意識的なエージェントとして機能する。
この能力は、イベントにおける無限の可能な変更をモデル化する複雑さのために、まだ探索されていない。
我々は,各ステップに対応する3つのタスクからなる最初のベンチマークMARSを紹介する。
論文 参考訳(メタデータ) (2024-06-04T08:35:04Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
視覚言語モデル(VLM)は近年,人間のような出力を生成できる視覚アシスタントとして,強力な有効性を示している。
我々は、既存の最先端のVLMを評価し、最高の性能モデルでさえ、強力な視覚的推論能力と一貫性を示すことができないことを発見した。
本稿では,VLMの推論性能と一貫性の向上を目的とした2段階トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-08T17:49:44Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Two Failures of Self-Consistency in the Multi-Step Reasoning of LLMs [78.31625291513589]
自己整合性は、解が複数のサブステップに対する解からなるタスクにおいて、有効な多段階推論の重要な基準であると主張する。
仮説的整合性と構成的整合性という,多段階推論において特に重要である2種類の自己整合性を提案する。
GPT-3/4モデルの複数変種は,多種多様なタスクにおける両タイプの整合性に不整合性を示すことを示した。
論文 参考訳(メタデータ) (2023-05-23T17:25:59Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
このアルゴリズムは、異なるモードの適応的統合の原理における不確かさを効率的に推定し、信頼できる回帰結果を生成する。
実世界のデータと実世界のデータの両方に対する実験結果から,多モード回帰タスクにおける本手法の有効性と信頼性が示された。
論文 参考訳(メタデータ) (2021-11-11T14:28:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。