論文の概要: Reward-Robust RLHF in LLMs
- arxiv url: http://arxiv.org/abs/2409.15360v3
- Date: Wed, 16 Oct 2024 14:56:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 19:43:38.358928
- Title: Reward-Robust RLHF in LLMs
- Title(参考訳): LLMにおけるReward-Robust RLHF
- Authors: Yuzi Yan, Xingzhou Lou, Jialian Li, Yiping Zhang, Jian Xie, Chao Yu, Yu Wang, Dong Yan, Yuan Shen,
- Abstract要約: 大規模言語モデル(LLM)は、より高度なインテリジェンスへと進化を続けている。
報酬モデルに基づく(RMに基づく)アライメント手法への依存は、大きな課題をもたらす。
本稿では,これらの課題に対処することを目的とした報酬損耗型RLHFフレームワークを提案する。
- 参考スコア(独自算出の注目度): 25.31456438114974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Large Language Models (LLMs) continue to progress toward more advanced forms of intelligence, Reinforcement Learning from Human Feedback (RLHF) is increasingly seen as a key pathway toward achieving Artificial General Intelligence (AGI). However, the reliance on reward-model-based (RM-based) alignment methods introduces significant challenges due to the inherent instability and imperfections of Reward Models (RMs), which can lead to critical issues such as reward hacking and misalignment with human intentions. In this paper, we introduce a reward-robust RLHF framework aimed at addressing these fundamental challenges, paving the way for more reliable and resilient learning in LLMs. Our approach introduces a novel optimization objective that carefully balances performance and robustness by incorporating Bayesian Reward Model Ensembles (BRME) to model the uncertainty set of reward functions. This allows the framework to integrate both nominal performance and minimum reward signals, ensuring more stable learning even with imperfect RMs. Empirical results demonstrate that our framework consistently outperforms baselines across diverse benchmarks, showing improved accuracy and long-term stability. We also provide a theoretical analysis, demonstrating that reward-robust RLHF approaches the stability of constant reward settings, which proves to be acceptable even in a stochastic-case analysis. Together, these contributions highlight the framework potential to enhance both the performance and stability of LLM alignment.
- Abstract(参考訳): 大規模言語モデル(LLM)がより高度なインテリジェンスへと進化し続けるにつれ、人間フィードバックからの強化学習(RLHF)は、人工知能(AGI)を実現するための重要な経路としてますます見なされている。
しかし、報酬モデルに基づくアライメント手法への依存は、リワードモデル(RM)の本質的な不安定性と不完全性のために重大な課題をもたらし、報酬のハッキングや人間の意図の不一致といった重大な問題を引き起こす可能性がある。
本稿では、これらの基本的な課題に対処し、LLMにおけるより信頼性が高く弾力性のある学習の道を開くことを目的とした報奨ロバストなRLHFフレームワークを提案する。
提案手法では,不確実な報酬関数の集合をモデル化するためにベイジアン・リワード・モデル・アンサンブル(BRME)を組み込むことにより,性能とロバスト性を慎重にバランスさせる新しい最適化手法を提案する。
これにより、フレームワークは名目上のパフォーマンスと最小報酬のシグナルを統合でき、不完全なRMでもより安定した学習を保証できる。
実験の結果、我々のフレームワークは様々なベンチマークで一貫してベースラインを上回り、精度と長期的な安定性が向上していることが示された。
また,RLHFが一定の報酬設定の安定性に近づき,確率解析においても許容できることを示す理論解析を行った。
これらのコントリビューションは、LLMアライメントの性能と安定性を両立させるフレームワークの可能性を強調している。
関連論文リスト
- Self-Consistency of the Internal Reward Models Improves Self-Rewarding Language Models [63.116041268654705]
同じ大言語モデル内の異なる内部報酬モデルが、しばしば矛盾した嗜好を生じさせることがわかった。
この矛盾は、自己生成の嗜好データの信頼性への懸念を高め、全体的なアライメントパフォーマンスを阻害し、さらなる研究の必要性を強調する。
トレーニング中に内部報酬モデル間の整合性を高めるための新しいフレームワークである自己一貫性内部報酬(SCIR)を提案する。
論文 参考訳(メタデータ) (2025-02-13T03:15:31Z) - Reusing Embeddings: Reproducible Reward Model Research in Large Language Model Alignment without GPUs [58.18140409409302]
大規模言語モデル (LLM) は強化学習 (RL) を通じて構造化タスクに大きく進歩した。
チャットボットやコンテンツ生成といった幅広い分野にRLを適用することは、ユニークな課題だ。
埋め込み型報酬モデルを用いた既存の報酬モデルアンサンブル研究の再現事例について述べる。
論文 参考訳(メタデータ) (2025-02-04T19:37:35Z) - Beyond Reward Hacking: Causal Rewards for Large Language Model Alignment [30.605500809158986]
本稿では,因果推論を統合し,素因果関係を緩和する因果報酬モデリング手法を提案する。
提案手法は様々な種類のスプリアス相関を効果的に緩和し,LLMと人間の嗜好との整合性を高めた。
論文 参考訳(メタデータ) (2025-01-16T16:00:37Z) - Insights from the Inverse: Reconstructing LLM Training Goals Through Inverse RL [7.988692259455583]
Reinforcement Learning from Human Feedbackで訓練された大規模言語モデル(LLM)は、目覚ましい能力を示しているが、その基盤となる報酬関数や意思決定プロセスは不透明である。
本稿では, 逆強化学習(IRL)を用いて暗黙の報酬関数を復元することにより, LLMを解釈する新しい手法を提案する。
我々は,ヒトの嗜好を予測する上で,最大80.40%の精度を達成できる報酬モデルを抽出し,様々な大きさの毒性アライメントLDMについて実験を行った。
論文 参考訳(メタデータ) (2024-10-16T12:14:25Z) - Uncertainty-aware Reward Model: Teaching Reward Models to Know What is Unknown [20.753374166695494]
本稿では,Uncertainty-aware Reward Model (URM)とそのアンサンブル変種URMEを紹介する。
URMは、不整合な人間の嗜好属性の分布をモデル化することにより、アレタリック不確かさを捉えるために確率的値ヘッドを用いる。
URMEはさらに、アンサンブル内の個々のURM間の不一致を調べて不確実性を定量化し、信頼できない評価の特定を可能にする。
論文 参考訳(メタデータ) (2024-10-01T16:29:59Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
大きな言語モデル(LLM)の能力を高めることが大きな課題だ。
本研究は,従来の事前学習データセットを用いたLCMの光連続訓練に関する実証的戦略から始まった。
次に、この戦略をインスタンス重み付け分散ロバスト最適化の原則化されたフレームワークに定式化します。
論文 参考訳(メタデータ) (2024-02-22T04:10:57Z) - WARM: On the Benefits of Weight Averaged Reward Models [63.08179139233774]
Weight Averaged Reward Models (WARM) を提案する。
最良N法とRL法を用いた要約タスクの実験は、WARMがLLM予測の全体的な品質とアライメントを改善することを示す。
論文 参考訳(メタデータ) (2024-01-22T18:27:08Z) - Let's Reinforce Step by Step [10.65244642965387]
人間のフィードバックからの強化学習をモデル推論の形式化に活用する。
以上の結果から, PRM法により得られる微粒な報酬は, 単純な数学的推論の精度を高めることが示唆された。
また、モデル性能において、報酬アグリゲーション関数が果たす重要な役割を示す。
論文 参考訳(メタデータ) (2023-11-10T01:35:51Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
本稿では,基本言語モデルと人間の監督を最小限に整合させる新しいアプローチ,すなわちSALMONを提案する。
私たちはDromedary-2という名のAIアシスタントを開発しており、コンテキスト内学習には6つの例と31の人間定義原則しかありません。
論文 参考訳(メタデータ) (2023-10-09T17:56:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。