論文の概要: Scaling Laws of Scientific Discovery with AI and Robot Scientists
- arxiv url: http://arxiv.org/abs/2503.22444v1
- Date: Fri, 28 Mar 2025 14:00:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:28:51.703450
- Title: Scaling Laws of Scientific Discovery with AI and Robot Scientists
- Title(参考訳): AIとロボット科学者による科学的発見の法則のスケーリング
- Authors: Pengsong Zhang, Heng Zhang, Huazhe Xu, Renjun Xu, Zhenting Wang, Cong Wang, Animesh Garg, Zhibin Li, Arash Ajoudani, Xinyu Liu,
- Abstract要約: 我々は、エージェントAIと組込みロボットを融合した自律的なジェネリスト科学者(AGS)システムを構想する。
高度なAIとロボット技術を、仮説の定式化からピアリーな原稿まであらゆる段階に組み込むことで、AGSは科学研究に必要な時間とリソースを削減できる。
我々は、そのようなシステムの増殖と高度化によって、科学的発見が新たなスケーリング法則に従う未来を予見する。
- 参考スコア(独自算出の注目度): 72.3420699173245
- License:
- Abstract: The rapid evolution of scientific inquiry highlights an urgent need for groundbreaking methodologies that transcend the limitations of traditional research. Conventional approaches, bogged down by manual processes and siloed expertise, struggle to keep pace with the demands of modern discovery. We envision an autonomous generalist scientist (AGS) system-a fusion of agentic AI and embodied robotics-that redefines the research lifecycle. This system promises to autonomously navigate physical and digital realms, weaving together insights from disparate disciplines with unprecedented efficiency. By embedding advanced AI and robot technologies into every phase-from hypothesis formulation to peer-ready manuscripts-AGS could slash the time and resources needed for scientific research in diverse field. We foresee a future where scientific discovery follows new scaling laws, driven by the proliferation and sophistication of such systems. As these autonomous agents and robots adapt to extreme environments and leverage a growing reservoir of knowledge, they could spark a paradigm shift, pushing the boundaries of what's possible and ushering in an era of relentless innovation.
- Abstract(参考訳): 科学的調査の急速な進化は、従来の研究の限界を超越する画期的な方法論の緊急の必要性を浮き彫りにしている。
従来のアプローチは手動のプロセスやサイロ化された専門知識によって根絶され、現代の発見の要求に合わせたペースを維持するのに苦労した。
我々は、自律的なジェネラリスト科学者(AGS)システム - エージェントAIとエンボディロボットの融合 - が研究ライフサイクルを再定義することを期待している。
このシステムは、物理的な領域とデジタル領域を自律的にナビゲートし、異なる分野からの洞察を前例のない効率で織り込むことを約束する。
高度なAIとロボット技術を、仮説の定式化からピアリーな原稿まであらゆる段階に組み込むことで、AGSはさまざまな分野の科学研究に必要な時間とリソースを削減できる。
我々は、そのようなシステムの増殖と高度化によって、科学的発見が新たなスケーリング法則に従う未来を予見する。
これらの自律型エージェントとロボットは極端な環境に適応し、知識の蓄積を増大させるため、可能な限りの限界を押し広げ、絶え間ないイノベーションの時代に導く、パラダイムシフトを引き起こす可能性がある。
関連論文リスト
- Towards Scientific Discovery with Generative AI: Progress, Opportunities, and Challenges [11.232704182001253]
本稿では、科学的な課題に応用された大規模言語モデルやその他のAI技術の最近の進歩に注目し、科学的な発見のためのAIの現状について考察する。
そして、科学的な発見のためのより包括的なAIシステムの開発に向けた重要な課題と研究の方向性を概説する。
論文 参考訳(メタデータ) (2024-12-16T03:52:20Z) - AIGS: Generating Science from AI-Powered Automated Falsification [17.50867181053229]
本稿では,重要な研究プロセスを代表する役割を担ったマルチエージェントシステムである,フルプロセスAIGSシステムのベビーステップとして,Baby-AIGSを提案する。
3つのタスクの実験では、Baby-AIGSは経験豊富な人間の研究者と同等ではないが、有意義な科学的発見を産み出すことができた。
論文 参考訳(メタデータ) (2024-11-17T13:40:35Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) は、科学研究に固有のチームワークを模倣するために設計されたマルチエージェントシステムである。
VirSciは研究のアイデアを共同で生成し、評価し、洗練するエージェントのチームを組織している。
このマルチエージェントアプローチは、新しい科学的アイデアを生み出す上で、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-12T07:16:22Z) - Automating the Practice of Science -- Opportunities, Challenges, and Implications [48.54225838534946]
本稿では、科学的実践における自動化のスコープを評価し、最近のアプローチを評価する。
自動科学の背景にあるモチベーションについて議論し、遭遇したハードルを分析し、その影響を調査し、この記事では、研究者、政策立案者、ステークホルダーに、自動化科学の実践のフロンティアをナビゲートするよう依頼する。
論文 参考訳(メタデータ) (2024-08-27T15:51:31Z) - DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery
through Sophisticated AI System Technologies [116.09762105379241]
DeepSpeed4Scienceは、AIシステム技術革新を通じてユニークな機能を構築することを目指している。
我々は、構造生物学研究における2つの重要なシステム課題に対処するために、DeepSpeed4Scienceで行った初期の進歩を紹介した。
論文 参考訳(メタデータ) (2023-10-06T22:05:15Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Automated Scientific Discovery: From Equation Discovery to Autonomous
Discovery Systems [5.7923858184309385]
本稿では、方程式発見から記号回帰から自律的な発見システムやエージェントまで、自動的な科学的発見を調査する。
我々は、Adamシステムに関する先駆的な研究から、物質科学から天文学まで、現在の分野への取り組みまで、クローズドループ科学発見システムを紹介する。
レベル5の最大レベルは、科学的知識の創出において人間の介入を必要としないと定義されている。
論文 参考訳(メタデータ) (2023-05-03T16:35:41Z) - AI for Science: An Emerging Agenda [30.260160661295682]
本報告では,Dagtuhl Seminar 22382 "Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling"のプログラムと成果について報告する。
AIの変革的ポテンシャルは、分野にわたって広く適用可能であることに由来するもので、研究領域間での統合によってのみ達成される。
技術的な進歩に加えて、この分野における次の進歩の波は、機械学習研究者、ドメインエキスパート、市民科学者、エンジニアのコミュニティを構築することにある。
論文 参考訳(メタデータ) (2023-03-07T20:21:43Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。