論文の概要: Towards a Science Exocortex
- arxiv url: http://arxiv.org/abs/2406.17809v2
- Date: Thu, 15 Aug 2024 14:32:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 18:07:06.441770
- Title: Towards a Science Exocortex
- Title(参考訳): 科学のエクソテックスを目指して
- Authors: Kevin G. Yager,
- Abstract要約: 我々はエージェントAIシステムにおける技術の現状をレビューし、これらの手法をどのように拡張して科学により大きな影響を与えるかについて論じる。
科学の外食はAIエージェントの群れとして設計することができ、各エージェントは特定の研究者のタスクを個別に合理化することができる。
- 参考スコア(独自算出の注目度): 0.5687661359570725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) methods are poised to revolutionize intellectual work, with generative AI enabling automation of text analysis, text generation, and simple decision making or reasoning. The impact to science is only just beginning, but the opportunity is significant since scientific research relies fundamentally on extended chains of cognitive work. Here, we review the state of the art in agentic AI systems, and discuss how these methods could be extended to have even greater impact on science. We propose the development of an exocortex, a synthetic extension of a person's cognition. A science exocortex could be designed as a swarm of AI agents, with each agent individually streamlining specific researcher tasks, and whose inter-communication leads to emergent behavior that greatly extend the researcher's cognition and volition.
- Abstract(参考訳): 人工知能(AI)メソッドは、テキスト分析、テキスト生成、簡単な意思決定や推論の自動化を可能にする生成AIによって、知的作業に革命をもたらす。
科学への影響は始まったばかりであるが、科学的研究は認知作業の連鎖の延長に基本的に依存しているため、この機会は重要である。
ここではエージェントAIシステムの現状を概観し、これらの手法が科学にさらに大きな影響を及ぼすようどのように拡張できるかについて議論する。
本研究では,人の認知を総合的に拡張したエキソクロテックスの開発を提案する。
科学の外食はAIエージェントの群れとして設計することができ、各エージェントは個々の研究者のタスクを個別に合理化し、そのコミュニケーションは研究者の認知と意志を著しく拡張する創発的な行動をもたらす。
関連論文リスト
- AIGS: Generating Science from AI-Powered Automated Falsification [17.50867181053229]
本稿では,重要な研究プロセスを代表する役割を担ったマルチエージェントシステムである,フルプロセスAIGSシステムのベビーステップとして,Baby-AIGSを提案する。
3つのタスクの実験では、Baby-AIGSは経験豊富な人間の研究者と同等ではないが、有意義な科学的発見を産み出すことができた。
論文 参考訳(メタデータ) (2024-11-17T13:40:35Z) - The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery [14.465756130099091]
本稿では,完全自動科学的発見のための最初の包括的枠組みについて述べる。
我々は、新しい研究アイデアを生成し、コードを書き、実験を実行し、結果を視覚化し、その結果を説明するThe AI Scientistを紹介します。
原則として、このプロセスは、人間の科学コミュニティのように行動しながら、オープンな方法でアイデアを反復的に発展させることができる。
論文 参考訳(メタデータ) (2024-08-12T16:58:11Z) - Explain the Black Box for the Sake of Science: the Scientific Method in the Era of Generative Artificial Intelligence [0.9065034043031668]
科学的手法は自然科学と応用科学の全ての分野における人間の進歩の基盤である。
我々は、人類の科学的発見のための複雑な推論が、少なくとも人工知能の出現以前には重要な存在であると主張している。
決定を下す上で重要なデータAIシステムを知ることは、ドメインの専門家や科学者との接触点になる可能性がある。
論文 参考訳(メタデータ) (2024-06-15T08:34:42Z) - "Turing Tests" For An AI Scientist [0.0]
本稿では,AIエージェントが独立して科学的研究を行うことができるかどうかを評価するために,AI科学者の研修試験を提案する。
我々は,AIエージェントが様々な科学領域において画期的な発見を行う能力を評価する7つのベンチマークテストを提案する。
論文 参考訳(メタデータ) (2024-05-22T05:14:27Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
我々は、周囲の信号を入力として取り、それを処理して環境を理解する、知覚の認知機能に焦点を当てる。
我々は、認知科学にインスパイアされたAIシステムを構築するために、AIに一連の方法を提案する。
論文 参考訳(メタデータ) (2023-10-13T01:21:55Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。