WorkTeam: Constructing Workflows from Natural Language with Multi-Agents
- URL: http://arxiv.org/abs/2503.22473v1
- Date: Fri, 28 Mar 2025 14:33:29 GMT
- Title: WorkTeam: Constructing Workflows from Natural Language with Multi-Agents
- Authors: Hanchao Liu, Rongjun Li, Weimin Xiong, Ziyu Zhou, Wei Peng,
- Abstract summary: Hand-crafted workflow construction requires expert knowledge, presenting significant technical barriers.<n>We propose WorkTeam, a multi-agent NL2Workflow framework comprising a supervisor, orchestrator, and filler agent.<n>Our approach significantly increases the success rate of workflow construction, providing a novel and effective solution for enterprise NL2Workflow services.
- Score: 6.656951366751657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Workflows play a crucial role in enhancing enterprise efficiency by orchestrating complex processes with multiple tools or components. However, hand-crafted workflow construction requires expert knowledge, presenting significant technical barriers. Recent advancements in Large Language Models (LLMs) have improved the generation of workflows from natural language instructions (aka NL2Workflow), yet existing single LLM agent-based methods face performance degradation on complex tasks due to the need for specialized knowledge and the strain of task-switching. To tackle these challenges, we propose WorkTeam, a multi-agent NL2Workflow framework comprising a supervisor, orchestrator, and filler agent, each with distinct roles that collaboratively enhance the conversion process. As there are currently no publicly available NL2Workflow benchmarks, we also introduce the HW-NL2Workflow dataset, which includes 3,695 real-world business samples for training and evaluation. Experimental results show that our approach significantly increases the success rate of workflow construction, providing a novel and effective solution for enterprise NL2Workflow services.
Related papers
- ComfyGPT: A Self-Optimizing Multi-Agent System for Comprehensive ComfyUI Workflow Generation [71.31634636156384]
We introduce ComfyGPT, the first self-optimizing multi-agent system designed to generate ComfyUI based on task descriptions automatically.
ComfyGPT comprises four specialized agents: ReformatAgent, FlowAgent, RefineAgent, and ExecuteAgent.
FlowDataset is a large-scale dataset containing 13,571 workflow-description pairs, and FlowBench is a benchmark for evaluating workflow generation systems.
arXiv Detail & Related papers (2025-03-22T06:48:50Z) - Turning Conversations into Workflows: A Framework to Extract and Evaluate Dialog Workflows for Service AI Agents [65.36060818857109]
We present a novel framework for extracting and evaluating dialog from historical interactions.
Our extraction process consists of two key stages: (1) a retrieval step to select relevant conversations based on key procedural elements, and (2) a structured workflow generation process using a question-answer-based chain-of-thought (QA-CoT) prompting.
arXiv Detail & Related papers (2025-02-24T16:55:15Z) - Flow: Modularized Agentic Workflow Automation [53.073598156915615]
Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution.<n>However, the effective adjustment of agentic during execution has not been well studied.<n>In this paper, we define an activity-on-vertex (AOV) graph, which allows continuous workflow refinement by agents.<n>Our proposed multi-agent framework achieves efficient concurrent execution of subtasks, effective goal achievement, and enhanced error tolerance.
arXiv Detail & Related papers (2025-01-14T04:35:37Z) - Opus: A Large Work Model for Complex Workflow Generation [0.0]
Opus is a framework for generating and optimizing tasks tailored to complex Business Process Outsourcing (BPO) use cases.<n>Our approach generates executables from Intention, defined as the alignment of Client Input, Client Output and Process Directed Context.
arXiv Detail & Related papers (2024-11-30T20:00:41Z) - WorkflowLLM: Enhancing Workflow Orchestration Capability of Large Language Models [105.46456444315693]
We presentLLM, a data-centric framework to enhance the capability of large language models in workflow orchestration.
It first constructs a large-scale fine-tuningBench with 106,763 samples, covering 1,503 APIs from 83 applications across 28 categories.
LlamaLlama demonstrates a strong capacity to orchestrate complex APIs, while also achieving notable generalization performance.
arXiv Detail & Related papers (2024-11-08T09:58:02Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorfBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.<n>We also present WorfEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.<n>We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - ComfyGen: Prompt-Adaptive Workflows for Text-to-Image Generation [87.39861573270173]
We introduce the novel task of prompt-adaptive workflow generation, where the goal is to automatically tailor a workflow to each user prompt.
We propose two LLM-based approaches to tackle this task: a tuning-based method that learns from user-preference data, and a training-free method that uses the LLM to select existing flows.
Our work shows that prompt-dependent flow prediction offers a new pathway to improving text-to-image generation quality, complementing existing research directions in the field.
arXiv Detail & Related papers (2024-10-02T16:43:24Z) - AutoFlow: Automated Workflow Generation for Large Language Model Agents [39.72700864347576]
Large Language Models (LLMs) have shown significant progress in understanding complex natural language.
To make sure LLM Agents follow an effective and reliable procedure to solve the given task, manually designed are usually used.
We propose AutoFlow, a framework designed to automatically generate for agents to solve complex tasks.
arXiv Detail & Related papers (2024-07-01T21:05:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.