論文の概要: MO-CTranS: A unified multi-organ segmentation model learning from multiple heterogeneously labelled datasets
- arxiv url: http://arxiv.org/abs/2503.22557v1
- Date: Fri, 28 Mar 2025 16:00:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:29:18.049831
- Title: MO-CTranS: A unified multi-organ segmentation model learning from multiple heterogeneously labelled datasets
- Title(参考訳): MO-CTranS:複数の異種ラベル付きデータセットから学習する統合マルチオーガナイズドセグメンテーションモデル
- Authors: Zhendi Gong, Susan Francis, Eleanor Cox, Stamatios N. Sotiropoulos, Dorothee P. Auer, Guoping Qiu, Andrew P. French, Xin Chen,
- Abstract要約: 多臓器セグメンテーションは多くの臨床業務において重要な役割を担っている。
部分的にラベル付けされたデータセットから堅牢に学習できる単一のモデルをトレーニングすることは依然として難しい。
このような問題を克服できる単一のモデルMO-CTranSを提案する。
- 参考スコア(独自算出の注目度): 11.588991747579493
- License:
- Abstract: Multi-organ segmentation holds paramount significance in many clinical tasks. In practice, compared to large fully annotated datasets, multiple small datasets are often more accessible and organs are not labelled consistently. Normally, an individual model is trained for each of these datasets, which is not an effective way of using data for model learning. It remains challenging to train a single model that can robustly learn from several partially labelled datasets due to label conflict and data imbalance problems. We propose MO-CTranS: a single model that can overcome such problems. MO-CTranS contains a CNN-based encoder and a Transformer-based decoder, which are connected in a multi-resolution manner. Task-specific tokens are introduced in the decoder to help differentiate label discrepancies. Our method was evaluated and compared to several baseline models and state-of-the-art (SOTA) solutions on abdominal MRI datasets that were acquired in different views (i.e. axial and coronal) and annotated for different organs (i.e. liver, kidney, spleen). Our method achieved better performance (most were statistically significant) than the compared methods. Github link: https://github.com/naisops/MO-CTranS.
- Abstract(参考訳): 多臓器セグメンテーションは多くの臨床業務において重要な役割を担っている。
実際には、大きな完全な注釈付きデータセットと比較して、複数の小さなデータセットがよりアクセスしやすいことが多く、臓器は一貫してラベル付けされない。
通常、個々のモデルはこれらのデータセットごとに訓練されるが、これはモデル学習にデータを使用する効果的な方法ではない。
ラベルの衝突とデータ不均衡の問題により、ラベル付きデータセットから堅牢に学習できる単一のモデルをトレーニングすることは依然として困難である。
このような問題を克服できる単一のモデルMO-CTranSを提案する。
MO-CTranSはCNNベースのエンコーダとトランスフォーマーベースのデコーダを含み、マルチ解像度で接続される。
タスク固有のトークンはデコーダに導入され、ラベルの相違を区別するのに役立つ。
本法は, 腹部MRI像(軸, 冠状動脈) を用いて, 異なる臓器 (肝臓, 腎臓, 脾臓) に対してアノテートした複数のベースラインモデルとSOTA (State-of-the-art) ソリューションを比較し, 比較検討した。
提案手法は比較手法よりも優れた性能(大半は統計的に有意)を得た。
Githubのリンク:https://github.com/naisops/MO-CTranS。
関連論文リスト
- Label Dropout: Improved Deep Learning Echocardiography Segmentation Using Multiple Datasets With Domain Shift and Partial Labelling [3.2322708710124815]
本稿では,ドメイン特性とラベルの有無を関連付ける新しいラベルドロップアウト方式を提案する。
ラベルのドロップアウトは,複数の部分ラベル付きデータセットを用いたトレーニングにおいて,2つの心構造に対して62%,25%のエコーセグメンテーションDiceスコアを改善することを実証した。
論文 参考訳(メタデータ) (2024-03-12T16:57:56Z) - Versatile Medical Image Segmentation Learned from Multi-Source Datasets via Model Self-Disambiguation [9.068045557591612]
本稿では,トレーニングのために,部分的あるいはスパースなセグメンテーションラベルのみを用いたマルチソースデータを活用する,費用対効果の代替案を提案する。
我々は,非一貫性なラベル付きマルチソースデータに関わる課題に対処するために,自己曖昧性,事前知識の取り込み,不均衡緩和の戦略を考案する。
論文 参考訳(メタデータ) (2023-11-17T18:28:32Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
本稿では,2つの1次元目標変数間で共有される信号の同定について考察する。
そこで本研究では,地中トラスラベルの存在下で使用可能な評価指標であるICMを提案する。
また、共有変数を学習するための単純かつ効果的なアプローチとして、Deep Canonical Information Decomposition (DCID)を提案する。
論文 参考訳(メタデータ) (2023-06-27T16:59:06Z) - Cascaded Multi-Modal Mixing Transformers for Alzheimer's Disease
Classification with Incomplete Data [8.536869574065195]
Multi-Modal Mixing Transformer (3MAT)は、マルチモーダルデータを利用するだけでなく、欠落したデータシナリオも扱う病気分類変換器である。
本稿では、欠落したデータシナリオを扱うために、前例のないモダリティ独立性とロバスト性を確保するための新しいモダリティドロップアウト機構を提案する。
論文 参考訳(メタデータ) (2022-10-01T11:31:02Z) - Learning Semantic Segmentation from Multiple Datasets with Label Shifts [101.24334184653355]
本論文では,ラベル空間が異なる複数のデータセットを対象としたモデルの自動学習手法であるUniSegを提案する。
具体的には,ラベルの相反と共起を考慮に入れた2つの損失を提案する。
論文 参考訳(メタデータ) (2022-02-28T18:55:19Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
本稿では,分類ラベルをセグメントマップの予測から導出する小型データセットのコスト効率の高い分類器であるCvSを提案する。
我々は,CvSが従来の手法よりもはるかに高い分類結果が得られることを示す多種多様な問題に対して,本フレームワークの有効性を評価する。
論文 参考訳(メタデータ) (2021-10-29T18:41:15Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
腹部臓器分節の文脈におけるラベルの重複から学ぶためのいくつかの方法を提案する。
半教師付きアプローチと適応的クロスエントロピー損失を組み合わせることで、不均一な注釈付きデータをうまく活用できることが判明した。
論文 参考訳(メタデータ) (2021-07-13T09:22:24Z) - Learning from Multiple Datasets with Heterogeneous and Partial Labels
for Universal Lesion Detection in CT [25.351709433029896]
我々は、Lesion ENSemble(LENS)という、シンプルで効果的な病変検出フレームワークを構築した。
LENSはマルチタスク方式で複数の異種病変データセットから効率的に学習することができる。
我々は4つのパブリックな病変データセットでフレームワークをトレーニングし、DeepLesionで800のサブボリュームを手作業でラベル付けして評価する。
論文 参考訳(メタデータ) (2020-09-05T17:55:21Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
本論文は,異なるモダリティから異なるパターンと共有パターンをカプセル化することにより,ドメイン間データから堅牢な表現を学習できる新しいモデルの実現を目的とする。
正常な臨床試験で得られたCTおよびMRI肝データに対する試験は、提案したモデルが他のすべてのベースラインを大きなマージンで上回っていることを示している。
論文 参考訳(メタデータ) (2020-06-08T07:35:55Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。