論文の概要: Breaking Language Barriers in Visual Language Models via Multilingual Textual Regularization
- arxiv url: http://arxiv.org/abs/2503.22577v1
- Date: Fri, 28 Mar 2025 16:26:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:32:20.363503
- Title: Breaking Language Barriers in Visual Language Models via Multilingual Textual Regularization
- Title(参考訳): 多言語テキスト正規化による視覚言語モデルにおける言語バリアの破壊
- Authors: Iñigo Pikabea, Iñaki Lacunza, Oriol Pareras, Carlos Escolano, Aitor Gonzalez-Agirre, Javier Hernando, Marta Villegas,
- Abstract要約: 本稿では,視覚的インストラクションチューニング中にテキストのみの多言語データを注入する連続多言語統合戦略を提案する。
本手法は,視覚能力の低下を伴わない言語間の言語忠実度を著しく向上させる。
- 参考スコア(独自算出の注目度): 9.349707150988893
- License:
- Abstract: Rapid advancements in Visual Language Models (VLMs) have transformed multimodal understanding but are often constrained by generating English responses regardless of the input language. This phenomenon has been termed as Image-induced Fidelity Loss (IFL) and stems from limited multimodal multilingual training data. To address this, we propose a continuous multilingual integration strategy that injects text-only multilingual data during visual instruction tuning, preserving the language model's original multilingual capabilities. Extensive evaluations demonstrate that our approach significantly improves linguistic fidelity across languages without degradation in visual performance. We also explore model merging, which improves language fidelity but comes at the cost of visual performance. In contrast, our core method achieves robust multilingual alignment without trade-offs, offering a scalable and effective path to mitigating IFL for global VLM adoption.
- Abstract(参考訳): 視覚言語モデル(VLM)の急速な進歩は多モーダル理解を変容させたが、入力言語によらず英語の応答を生成することで制約されることが多い。
この現象は、画像誘発フィデリティ・ロス(IFL)と呼ばれ、限られたマルチモーダル多言語訓練データに由来する。
そこで本稿では,視覚的インストラクションチューニング中にテキストのみの多言語データを注入する連続多言語統合手法を提案する。
広範に評価した結果,視覚能力の低下を伴わない言語間の言語的忠実度が著しく向上することが示唆された。
モデルマージについても検討し、言語忠実性を改善すると同時に、視覚的パフォーマンスの犠牲にもなります。
対照的に、我々のコア手法はトレードオフのない堅牢な多言語アライメントを実現し、グローバルなVLM導入のためにIFLを緩和するためのスケーラブルで効果的な経路を提供する。
関連論文リスト
- Exploring Vision Language Models for Multimodal and Multilingual Stance Detection [9.079302402271491]
ソーシャルメディアのグローバルリーチは情報の拡散を増幅し、堅牢な自然言語処理タスクの必要性を強調している。
以前の研究では主にテキストのみの入力に焦点が当てられ、マルチモーダルなシナリオは比較的過小評価されている。
本稿では,マルチモーダルおよび多言語姿勢検出タスクにおけるVLM(Vision-Language Models)の評価を行う。
論文 参考訳(メタデータ) (2025-01-29T13:39:53Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Accelerating Multilingual Language Model for Excessively Tokenized Languages [3.5570874721859016]
大型言語モデル(LLM)のトークン化子は、文字やUnicodeレベルのトークンを非ローマ語アルファベットの言語で断片化することが多い。
このような言語でテキスト生成を高速化する,シンプルで効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-19T12:26:57Z) - RC3: Regularized Contrastive Cross-lingual Cross-modal Pre-training [84.23022072347821]
本稿では,弱整列型ビオテキスト入力の表現近接を制約する正規化言語間ビオテキストコントラスト学習目標を提案する。
6言語にまたがる5つの下流マルチモーダルタスクの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-13T14:41:05Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - xGQA: Cross-Lingual Visual Question Answering [100.35229218735938]
xGQAは視覚的質問応答タスクのための新しい多言語評価ベンチマークである。
確立された英語GQAデータセットを7言語に拡張する。
本稿では,マルチモーダルトランスフォーマーモデルに適応するアダプタベースの新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-13T15:58:21Z) - Learning Multilingual Representation for Natural Language Understanding
with Enhanced Cross-Lingual Supervision [42.724921817550516]
そこで本稿では,MAの代替として,DA(Decomposed attention)というネットワークを提案する。
DAは言語内注意(IA)と言語間注意(CA)から構成されており、それぞれ言語内および言語間監督をモデル化している。
様々な言語間自然言語理解タスクの実験により、提案したアーキテクチャと学習戦略がモデルの言語間移動性を大幅に改善することが示された。
論文 参考訳(メタデータ) (2021-06-09T16:12:13Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2は、言語間クロスモーダル表現学習のための最初の機械翻訳拡張フレームワークである。
Masked Region-token Modeling (MRTM) と Visual Translation Language Modeling (VTLM) の2つの新しいプリトレーニングタスクを提案する。
提案手法は,英語タスクにおける単言語学習モデルと同等の性能を維持しつつ,多種多様な非英語ベンチマークで新たな最先端を実現する。
論文 参考訳(メタデータ) (2021-04-01T08:30:53Z) - Vokenization: Improving Language Understanding with Contextualized,
Visual-Grounded Supervision [110.66085917826648]
我々は,言語トークンを関連画像に文脈的にマッピングすることで,言語のみのデータに対するマルチモーダルアライメントを補間する手法を開発した。
語彙化」は比較的小さな画像キャプションデータセットに基づいて訓練され、それを大規模言語コーパスのための語彙生成に適用する。
これらの文脈的に生成された語彙を用いて学習し、視覚的に制御された言語モデルにより、複数の純粋言語タスクにおいて、自己教師による代替よりも一貫した改善が示される。
論文 参考訳(メタデータ) (2020-10-14T02:11:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。