KEVS: Enhancing Segmentation of Visceral Adipose Tissue in Pre-Cystectomy CT with Gaussian Kernel Density Estimation
- URL: http://arxiv.org/abs/2503.22592v1
- Date: Fri, 28 Mar 2025 16:41:09 GMT
- Title: KEVS: Enhancing Segmentation of Visceral Adipose Tissue in Pre-Cystectomy CT with Gaussian Kernel Density Estimation
- Authors: Thomas Boucher, Nicholas Tetlow, Annie Fung, Amy Dewar, Pietro Arina, Sven Kerneis, John Whittle, Evangelos B. Mazomenos,
- Abstract summary: The distribution of visceral adipose tissue (VAT) in cystectomy patients is indicative of post-operative complications.<n>Existing VAT segmentation methods for computed tomography (CT) employing intensity thresholding have limitations relating to inter-observer variability.<n>This paper introduces a novel method for VAT prediction in pre-cystectomy CT, which is fully automated and does not require ground-truth VAT masks for training.
- Score: 0.9937570340630559
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: The distribution of visceral adipose tissue (VAT) in cystectomy patients is indicative of the incidence of post-operative complications. Existing VAT segmentation methods for computed tomography (CT) employing intensity thresholding have limitations relating to inter-observer variability. Moreover, the difficulty in creating ground-truth masks limits the development of deep learning (DL) models for this task. This paper introduces a novel method for VAT prediction in pre-cystectomy CT, which is fully automated and does not require ground-truth VAT masks for training, overcoming aforementioned limitations. Methods: We introduce the Kernel density Enhanced VAT Segmentator ( KEVS), combining a DL semantic segmentation model, for multi-body feature prediction, with Gaussian kernel density estimation analysis of predicted subcutaneous adipose tissue to achieve accurate scan-specific predictions of VAT in the abdominal cavity. Uniquely for a DL pipeline, KEVS does not require ground-truth VAT masks. Results: We verify the ability of KEVS to accurately segment abdominal organs in unseen CT data and compare KEVS VAT segmentation predictions to existing state-of-the-art (SOTA) approaches in a dataset of 20 pre-cystectomy CT scans, collected from University College London Hospital (UCLH-Cyst), with expert ground-truth annotations. KEVS presents a 4.80% and 6.02% improvement in Dice Coefficient over the second best DL and thresholding-based VAT segmentation techniques respectively when evaluated on UCLH-Cyst. Conclusion: This research introduces KEVS; an automated, SOTA method for the prediction of VAT in pre-cystectomy CT which eliminates inter-observer variability and is trained entirely on open-source CT datasets which do not contain ground-truth VAT masks.
Related papers
- Segmentation-Guided CT Synthesis with Pixel-Wise Conformal Uncertainty Bounds [2.424469485586727]
Cone Beam CT (CBCT) is used throughout Adaptive Radiotherapy (ART) to generate sCTs for improved dose calculations.<n>CBCT suffers from severe artefacts and poor image quality, making it unsuitable for precise dosimetry.<n>Deep learning-based CBCT-to-CT translation has emerged as a promising approach.<n>We propose STF-RUE, a novel framework integrating two key components.
arXiv Detail & Related papers (2025-03-11T15:07:16Z) - Comprehensive Evaluation of OCT-based Automated Segmentation of Retinal Layer, Fluid and Hyper-Reflective Foci: Impact on Diabetic Retinopathy Severity Assessment [0.0]
Diabetic retinopathy (DR) is a leading cause of vision loss, requiring early and accurate assessment to prevent irreversible damage.
This study proposes an active-learning-based deep learning pipeline for automated segmentation of retinal layers.
arXiv Detail & Related papers (2025-03-03T07:23:56Z) - CT-based brain ventricle segmentation via diffusion Schrödinger Bridge without target domain ground truths [0.9720086191214947]
Efficient and accurate brain ventricle segmentation from clinical CT scans is critical for emergency surgeries like ventriculostomy.
We introduce a novel uncertainty-aware ventricle segmentation technique without the need of CT segmentation ground truths.
Our method employs the diffusion Schr"odinger Bridge and an attention recurrent residual U-Net to capitalize on unpaired CT and MRI scans.
arXiv Detail & Related papers (2024-05-28T15:17:58Z) - DPER: Diffusion Prior Driven Neural Representation for Limited Angle and Sparse View CT Reconstruction [45.00528216648563]
Diffusion Prior Driven Neural Representation (DPER) is an unsupervised framework designed to address the exceptionally ill-posed CT reconstruction inverse problems.
DPER adopts the Half Quadratic Splitting (HQS) algorithm to decompose the inverse problem into data fidelity and distribution prior sub-problems.
We conduct comprehensive experiments to evaluate the performance of DPER on LACT and ultra-SVCT reconstruction with two public datasets.
arXiv Detail & Related papers (2024-04-27T12:55:13Z) - Automated Assessment of Critical View of Safety in Laparoscopic
Cholecystectomy [51.240181118593114]
Cholecystectomy (gallbladder removal) is one of the most common procedures in the US, with more than 1.2M procedures annually.
LC is associated with an increase in bile duct injuries (BDIs), resulting in significant morbidity and mortality.
In this paper, we develop deep-learning techniques to automate the assessment of critical view of safety (CVS) in LCs.
arXiv Detail & Related papers (2023-09-13T22:01:36Z) - Synchronous Image-Label Diffusion Probability Model with Application to
Stroke Lesion Segmentation on Non-contrast CT [2.6750287043724303]
Stroke lesion volume is a key radiologic measurement for assessing the prognosis of Acute Ischemic Stroke (AIS) patients.
Recent diffusion probabilistic models have shown potentials of being used for image segmentation.
In this paper, a novel Synchronous image-label Diffusion Probability Model (SDPM) is proposed for stroke lesion segmentation on NCCT.
arXiv Detail & Related papers (2023-07-04T14:16:49Z) - Body Composition Assessment with Limited Field-of-view Computed
Tomography: A Semantic Image Extension Perspective [5.373119949253442]
Field-of-view (FOV) tissue truncation beyond the lungs is common in routine lung screening computed tomography (CT)
In this work, we formulate the problem from the semantic image extension perspective which only requires image data as inputs.
The proposed two-stage method identifies a new FOV border based on the estimated extent of the complete body and imputes missing tissues in the truncated region.
arXiv Detail & Related papers (2022-07-13T23:19:22Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSim is an agent-based compartmental simulator based on virology, disease progression, social contact networks, and mobility patterns.
We use COVI-AgentSim to perform cost-adjusted analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features.
arXiv Detail & Related papers (2020-10-30T00:47:01Z) - ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model [41.444917622855606]
We release a dedicated OCT-A SEgmentation dataset (ROSE), which consists of 229 OCT-A images with vessel annotations at either centerline-level or pixel level.
Secondly, we propose a novel Split-based Coarse-to-Fine vessel segmentation network (SCF-Net), with the ability to detect thick and thin vessels separately.
In the SCF-Net, a split-based coarse segmentation (SCS) module is first introduced to produce a preliminary confidence map of vessels, and a split-based refinement (SRN) module is then used to optimize the shape/contour of
arXiv Detail & Related papers (2020-07-10T06:54:19Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - TeCNO: Surgical Phase Recognition with Multi-Stage Temporal
Convolutional Networks [43.95869213955351]
We propose a Multi-Stage Temporal Convolutional Network (MS-TCN) that performs hierarchical prediction refinement for surgical phase recognition.
Our method is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos with and without the use of additional surgical tool information.
arXiv Detail & Related papers (2020-03-24T10:12:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.