Comprehensive Evaluation of OCT-based Automated Segmentation of Retinal Layer, Fluid and Hyper-Reflective Foci: Impact on Diabetic Retinopathy Severity Assessment
- URL: http://arxiv.org/abs/2503.01248v3
- Date: Fri, 11 Apr 2025 03:23:52 GMT
- Title: Comprehensive Evaluation of OCT-based Automated Segmentation of Retinal Layer, Fluid and Hyper-Reflective Foci: Impact on Diabetic Retinopathy Severity Assessment
- Authors: S. Chen, D. Ma, M. Raviselvan, S. Sundaramoorthy, K. Popuri, M. J. Ju, M. V. Sarunic, D. Ratra, M. F. Beg,
- Abstract summary: Diabetic retinopathy (DR) is a leading cause of vision loss, requiring early and accurate assessment to prevent irreversible damage.<n>This study proposes an active-learning-based deep learning pipeline for automated segmentation of retinal layers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diabetic retinopathy (DR) is a leading cause of vision loss, requiring early and accurate assessment to prevent irreversible damage. Spectral Domain Optical Coherence Tomography (SD-OCT) enables high-resolution retinal imaging, but automated segmentation performance varies, especially in cases with complex fluid and hyperreflective foci (HRF) patterns. This study proposes an active-learning-based deep learning pipeline for automated segmentation of retinal layers, fluid, and HRF, using four state-of-the-art models: U-Net, SegFormer, SwinUNETR, and VM-UNet, trained on expert-annotated SD-OCT volumes. Segmentation accuracy was evaluated with five-fold cross-validation, and retinal thickness was quantified using a K-nearest neighbors algorithm and visualized with Early Treatment Diabetic Retinopathy Study (ETDRS) maps. SwinUNETR achieved the highest overall accuracy (DSC = 0.7719; NSD = 0.8149), while VM-UNet excelled in specific layers. Structural differences were observed between non-proliferative and proliferative DR, with layer-specific thickening correlating with visual acuity impairment. The proposed framework enables robust, clinically relevant DR assessment while reducing the need for manual annotation, supporting improved disease monitoring and treatment planning.
Related papers
- Enhancing DR Classification with Swin Transformer and Shifted Window Attention [9.99302279736049]
Diabetic retinopathy (DR) is a leading cause of blindness worldwide, underscoring the importance of early detection for effective treatment.
We propose a robust preprocessing pipeline incorporating image cropping, Contrast-Limited Adaptive Histogram Equalization (CLAHE), and targeted data augmentation to improve model generalization and resilience.
We validate our method on the Aptos and IDRiD datasets for multi-class DR classification, achieving accuracy rates of 89.65% and 97.40%, respectively.
arXiv Detail & Related papers (2025-04-20T13:23:20Z) - RURANET++: An Unsupervised Learning Method for Diabetic Macular Edema Based on SCSE Attention Mechanisms and Dynamic Multi-Projection Head Clustering [13.423253964156117]
RURANET++ is an unsupervised learning-based automated diagnostic system for Diabetic Macular Edema (DME)
During feature processing, a pre-trained GoogLeNet model extracts deep features from retinal images, followed by PCA-based dimensionality reduction to 50 dimensions for computational efficiency.
Experimental results demonstrate superior performance across multiple metrics, achieving maximum accuracy (0.8411), precision (0.8593), recall (0.8411), and F1-score, with exceptional clustering quality.
arXiv Detail & Related papers (2025-02-27T16:06:57Z) - KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-10-28T16:00:42Z) - Deep Learning-Based Detection of Referable Diabetic Retinopathy and Macular Edema Using Ultra-Widefield Fundus Imaging [0.6727410055112188]
Diabetic retinopathy and diabetic macular edema are significant complications of diabetes that can lead to vision loss.
Early detection through ultra-widefield fundus imaging enhances patient outcomes but presents challenges in image quality and analysis scale.
This paper introduces deep learning solutions for automated UWF image analysis within the framework of the MICCAI 2024 UWF4DR challenge.
arXiv Detail & Related papers (2024-09-19T15:51:48Z) - Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images [43.73298205923969]
We present a novel PolarNet+ that uses retinal optical coherence tomography angiography ( OCTA) to discriminate early-onset Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects from controls.
Our method first maps OCTA images from Cartesian coordinates to polar coordinates, allowing approximate sub-region calculation.
We then introduce a multi-view module to serialize and analyze the images along three dimensions for comprehensive, clinically useful information extraction.
arXiv Detail & Related papers (2024-08-09T15:10:34Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
Optical Coherence Tomography Angiography is a promising tool for detecting Alzheimer's disease (AD) by imaging the retinal microvasculature.
We propose a novel deep-learning framework called Polar-Net to provide interpretable results and leverage clinical prior knowledge.
We show that Polar-Net outperforms existing state-of-the-art methods and provides more valuable pathological evidence for the association between retinal vascular changes and AD.
arXiv Detail & Related papers (2023-11-10T11:49:49Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Automated analysis of diabetic retinopathy using vessel segmentation
maps as inductive bias [6.667329719331044]
Early stages of diabetic retinopathy can be diagnosed by monitoring vascular changes in the deep vascular complex.
In this work, we investigate a novel method for automated DR grading based on optical coherence tomography angiography ( OCTA) images.
arXiv Detail & Related papers (2022-10-28T10:58:53Z) - Parametric Scaling of Preprocessing assisted U-net Architecture for
Improvised Retinal Vessel Segmentation [1.3869502085838448]
We present an image enhancement technique based on the morphological preprocessing coupled with a scaled U-net architecture.
A significant improvement as compared to the other algorithms in the domain, in terms of the area under ROC curve (>0.9762) and classification accuracy (>95.47%) are evident from the results.
arXiv Detail & Related papers (2022-03-18T15:26:05Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
We propose a symmetry enhanced attention network (SEAN) for acute ischemic infarct segmentation.
Our proposed network automatically transforms an input CT image into the standard space where the brain tissue is bilaterally symmetric.
The proposed SEAN outperforms some symmetry-based state-of-the-art methods in terms of both dice coefficient and infarct localization.
arXiv Detail & Related papers (2021-10-11T07:13:26Z) - Segmentation of Anatomical Layers and Artifacts in Intravascular
Polarization Sensitive Optical Coherence Tomography Using Attending Physician
and Boundary Cardinality Lost Terms [4.93836246080317]
Intravascular ultrasound and optical coherence tomography are widely available for characterizing coronary stenoses.
We propose a convolutional neural network model and optimize its performance using a new multi-term loss function.
Our model segments two classes of major artifacts and detects the anatomical layers within the thickened vessel wall regions.
arXiv Detail & Related papers (2021-05-11T15:52:31Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Sea-Net: Squeeze-And-Excitation Attention Net For Diabetic Retinopathy
Grading [9.181677987146418]
Diabetes is one of the most common disease in individuals.
Diabetic retinopathy (DR) is a complication of diabetes, which could lead to blindness.
DR grading based on retinal images provides a great diagnostic and prognostic value for treatment planning.
arXiv Detail & Related papers (2020-10-29T03:48:01Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
The identification of retinal layer thicknesses serves as an essential task be done for each patient separately.
The elaboration of automated segmentation models has become an important task in the field of medical image processing.
We propose a novel, purely data driven textitgeometric approach to order-constrained 3D OCT retinal cell layer segmentation
arXiv Detail & Related papers (2020-09-10T01:57:53Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z) - DcardNet: Diabetic Retinopathy Classification at Multiple Levels Based
on Structural and Angiographic Optical Coherence Tomography [1.9262162668141078]
A convolutional neural network (CNN) based method is proposed to fulfill a diabetic retinopathy (DR) classification framework.
A densely and continuously connected neural network with adaptive rate dropout (DcardNet) is designed for the DR classification.
Three separate classification levels are generated for each case based on the International Clinical Diabetic Retinopathy scale.
arXiv Detail & Related papers (2020-06-09T19:44:10Z) - Segmentation of Retinal Low-Cost Optical Coherence Tomography Images
using Deep Learning [2.571523045125397]
The need for treatment is determined by the presence or change of disease-specific OCT-based biomarkers.
The monitoring frequency of current treatment schemes is not individually adapted to the patient and therefore often insufficient.
One of the key requirements of a home monitoring OCT system is a computer-aided diagnosis to automatically detect and quantify pathological changes.
arXiv Detail & Related papers (2020-01-23T12:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.