Towards a Quantum Information Theory of Hadronization: Dihadron Fragmentation and Neutral Polarization in Heavy Baryons
- URL: http://arxiv.org/abs/2503.22607v1
- Date: Fri, 28 Mar 2025 16:52:28 GMT
- Title: Towards a Quantum Information Theory of Hadronization: Dihadron Fragmentation and Neutral Polarization in Heavy Baryons
- Authors: Rebecca von Kuk, Kyle Lee, Johannes K. L. Michel, Zhiquan Sun,
- Abstract summary: We adapt the CHSH inequality to the fragmentation of a single parton to hadron pairs.<n>We extend the theory of quantum contextuality and local quantum systems to the neutral polarization of a single spin-1 hadronic system.
- Score: 0.562479170374811
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We pioneer the application of quantum information theory to experimentally distinguish between classes of hadronization models. We adapt the CHSH inequality to the fragmentation of a single parton to hadron pairs, a violation of which would rule out classical dynamics of hadronization altogether. Furthermore, we apply and extend the theory of quantum contextuality and local quantum systems to the neutral polarization of a single spin-1 hadronic system, namely the light constituents of excited Sigma baryons $\Sigma^{*}_{c,b}$ formed in the fragmentation of heavy quarks.
Related papers
- Field theory for monitored Brownian SYK clusters [0.0]
We consider the time evolution of multiple clusters of Brownian Sachdev-Ye-Kitaev systems.
We construct a coherent states path integral of the dynamics by generalizing spin coherent states for higher symmetry groups.
We show that in the stationary regime, two monitored clusters exhibit linear-in-N entanglement, with a proportionality factor dependent on the strength of the unitary coupling.
arXiv Detail & Related papers (2024-10-10T16:21:19Z) - Emergent Fracton Hydrodynamics in the Fractional Quantum Hall Regime of Ultracold Atoms [41.94295877935867]
We show that in the lowest Landau level the system generically relaxes subdiffusively.
The slow relaxation is understood from emergent conservation laws of the total charge.
We discuss the prospect of rotating quantum gases as well as ultracold atoms in optical lattices for observing this unconventional relaxation dynamics.
arXiv Detail & Related papers (2024-10-09T18:00:02Z) - Entanglement Hamiltonian and effective temperature of non-Hermitian quantum spin ladders [0.0]
We analytically investigate the entanglement Hamiltonian and entanglement energy spectrum of a non-Hermitian spin ladder.
Our findings provide new insights into quantum entanglement in non-Hermitian systems.
arXiv Detail & Related papers (2024-09-25T16:20:24Z) - The quantum vortices dynamics: spatio-temporal scale hierarchy and origin of turbulence [0.0]
This study investigates the evolution and interaction of quantum vortex loops with a small but non-zero radius of core.
We consider small perturbations in the ring-shaped loops, which include both helical-type shape variations and small excitations of the flow in the vortex core.
arXiv Detail & Related papers (2023-09-03T05:39:13Z) - Quantum quenches in fractonic field theories [0.0]
We study out-of-equilibrium dynamics caused by global quantum quenches in fractonic scalar field theories.
We discuss a generalization to $mathbbZ_n$-symmetric field theories, and introduce a proper regularization.
arXiv Detail & Related papers (2023-06-26T18:00:02Z) - Dynamics of mixed quantum-classical spin systems [0.0]
Mixed quantum-classical spin systems have been proposed in spin chain theory, organic chemistry, and, more recently, spintronics.
Here, we present a fully Hamiltonian theory of quantum-classical spin dynamics that appears to be the first to ensure an entire series of consistency properties.
arXiv Detail & Related papers (2022-10-03T14:53:46Z) - Semiclassical roots of universality in many-body quantum chaos [0.0]
In quantum systems with a classical limit, advanced semiclassical methods provide the crucial link between classically chaotic dynamics and corresponding universal features at the quantum level.
This paper provides a unified framework for understanding random-matrix correlations of both single-particle and many-body quantum chaotic systems.
Case studies presented include a many-body version of Gutzwiller's trace formula for the spectral density and out-of-time-order correlators along with brief remarks on where further progress may be forthcoming.
arXiv Detail & Related papers (2022-05-05T18:07:57Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - Dynamical Mean-Field Theory for Markovian Open Quantum Many-Body Systems [0.0]
We extend the nonequilibrium bosonic Dynamical Mean Field Theory to Markovian open quantum systems.
As a first application, we address the steady-state of a driven-dissipative Bose-Hubbard model with two-body losses and incoherent pump.
arXiv Detail & Related papers (2020-08-06T10:35:26Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.