Field theory for monitored Brownian SYK clusters
- URL: http://arxiv.org/abs/2410.08079v2
- Date: Mon, 4 Nov 2024 13:45:05 GMT
- Title: Field theory for monitored Brownian SYK clusters
- Authors: Anastasiia Tiutiakina, Hugo Lóio, Guido Giachetti, Jacopo De Nardis, Andrea De Luca,
- Abstract summary: We consider the time evolution of multiple clusters of Brownian Sachdev-Ye-Kitaev systems.
We construct a coherent states path integral of the dynamics by generalizing spin coherent states for higher symmetry groups.
We show that in the stationary regime, two monitored clusters exhibit linear-in-N entanglement, with a proportionality factor dependent on the strength of the unitary coupling.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the time evolution of multiple clusters of Brownian Sachdev-Ye-Kitaev (SYK), i.e. systems of N Majorana fermions with a noisy interaction term. In addition to the unitary evolution, we introduce two-fermion monitorings. We construct a coherent states path integral of the dynamics by generalizing spin coherent states for higher symmetry groups. We then demonstrate that the evolution of the replicated density matrix can be described by an effective field theory for the "light" degrees of freedom, i.e. the quantum fluctuations generated by the unitary evolution. This method is applied to both quadratic, where the field theory reduces to the nonlinear sigma model (NLSM), and also to interacting SYK clusters. We show that in the stationary regime, two monitored clusters exhibit linear-in-N entanglement, with a proportionality factor dependent on the strength of the unitary coupling.
Related papers
- Towards a Quantum Information Theory of Hadronization: Dihadron Fragmentation and Neutral Polarization in Heavy Baryons [0.562479170374811]
We adapt the CHSH inequality to the fragmentation of a single parton to hadron pairs.
We extend the theory of quantum contextuality and local quantum systems to the neutral polarization of a single spin-1 hadronic system.
arXiv Detail & Related papers (2025-03-28T16:52:28Z) - Simulating decoherence of coupled two spin qubits using generalized
cluster correlation expansion [2.7354851983299784]
We study the coherence of two coupled spin qubits in the presence of a bath of nuclear spins.
In our model, two electron spin qubits coupled with isotropic exchange or magnetic dipolar interactions interact with an environment of random nuclear spins.
arXiv Detail & Related papers (2024-02-28T21:46:32Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Manipulating growth and propagation of correlations in dipolar
multilayers: From pair production to bosonic Kitaev models [0.0]
We map the many-body spin dynamics to bosonic models.
In a bilayer configuration we show how to engineer the paradigmatic two-mode squeezing Hamiltonian known from quantum optics.
In multi-layer configurations we engineer a bosonic variant of the Kitaev model displaying chiral propagation along the layer direction.
arXiv Detail & Related papers (2022-11-22T19:00:01Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Mechanisms for the emergence of Gaussian correlations [0.471876092032107]
We investigate two mechanisms leading to memory loss of non-Gaussian correlations after switching off the interactions in an isolated quantum system.
The first mechanism is based on spatial scrambling and results in the emergence of locally Gaussian steady states.
The second mechanism, characterized as canonical transmutation', is based on the mixing of a pair of canonically conjugate fields.
arXiv Detail & Related papers (2021-08-17T18:06:19Z) - Fermionic duality: General symmetry of open systems with strong
dissipation and memory [0.0]
We present a nontrivial fermionic duality relation between the evolution of states (Schr"odinger) and of observables (Heisenberg)
We show how this highly nonintuitive relation can be understood and exploited in analytical calculations within all canonical approaches to quantum dynamics.
arXiv Detail & Related papers (2021-04-22T17:37:42Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Phase space theory for open quantum systems with local and collective
dissipative processes [0.0]
We investigate driven dissipative quantum dynamics of an ensemble of two-level systems given by a Markovian master equation with collective and noncollective dissipators.
Our results expose, utilize and promote pioneered techniques in the context of laser theory.
arXiv Detail & Related papers (2020-06-05T07:22:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.