Evaluation of Machine-generated Biomedical Images via A Tally-based Similarity Measure
- URL: http://arxiv.org/abs/2503.22658v1
- Date: Fri, 28 Mar 2025 17:44:01 GMT
- Title: Evaluation of Machine-generated Biomedical Images via A Tally-based Similarity Measure
- Authors: Frank J. Brooks, Rucha Deshpande,
- Abstract summary: It is difficult to quantitatively and authoritatively evaluate the quality of synthetic images.<n> meaningful evaluation of generated image quality can be accomplished using the Tversky Index.<n>The main result is that when the subjectivity and intrinsic deficiencies of any feature-encoding choice are put upfront, Tversky's method leads to intuitive results.
- Score: 1.12359878474312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Super-resolution, in-painting, whole-image generation, unpaired style-transfer, and network-constrained image reconstruction each include an aspect of machine-learned image synthesis where the actual ground truth is not known at time of use. It is generally difficult to quantitatively and authoritatively evaluate the quality of synthetic images; however, in mission-critical biomedical scenarios robust evaluation is paramount. In this work, all practical image-to-image comparisons really are relative qualifications, not absolute difference quantifications; and, therefore, meaningful evaluation of generated image quality can be accomplished using the Tversky Index, which is a well-established measure for assessing perceptual similarity. This evaluation procedure is developed and then demonstrated using multiple image data sets, both real and simulated. The main result is that when the subjectivity and intrinsic deficiencies of any feature-encoding choice are put upfront, Tversky's method leads to intuitive results, whereas traditional methods based on summarizing distances in deep feature spaces do not.
Related papers
- Five Pitfalls When Assessing Synthetic Medical Images with Reference Metrics [0.9582978458237521]
Reference metrics have been developed to objectively and quantitatively compare two images.
The correlation of reference metrics and human perception of quality can vary strongly for different kinds of distortions.
We selected five pitfalls that showcase unexpected and probably undesired reference metric scores.
arXiv Detail & Related papers (2024-08-12T11:48:57Z) - Non-Reference Quality Assessment for Medical Imaging: Application to Synthetic Brain MRIs [0.0]
This study introduces a novel deep learning-based non-reference approach to assess brain MRI quality by training a 3D ResNet.
The network is designed to estimate quality across six distinct artifacts commonly encountered in MRI scans.
Results demonstrate superior performance in accurately estimating distortions and reflecting image quality from multiple perspectives.
arXiv Detail & Related papers (2024-07-20T22:05:30Z) - Metrics to Quantify Global Consistency in Synthetic Medical Images [6.863780677964219]
We introduce two metrics that can measure the global consistency of synthetic images on a per-image basis.
We quantify global consistency by predicting and comparing explicit attributes of images on patches using supervised trained neural networks.
Our results demonstrate that predicting explicit attributes of synthetic images on patches can distinguish globally consistent from inconsistent images.
arXiv Detail & Related papers (2023-08-01T09:29:39Z) - Evaluating the Quality and Diversity of DCGAN-based Generatively
Synthesized Diabetic Retinopathy Imagery [0.07499722271664144]
Publicly available diabetic retinopathy (DR) datasets are imbalanced, containing limited numbers of images with DR.
The imbalance can be addressed using Geneversarative Adrial Networks (GANs) to augment the datasets with synthetic images.
To evaluate the quality and diversity of synthetic images, several evaluation metrics, such as Multi-Scale Structural Similarity Index (MS-SSIM), Cosine Distance (CD), and Fr't Inception Distance (FID) are used.
arXiv Detail & Related papers (2022-08-10T23:50:01Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
We propose a practical solution named degraded-reference IQA (DR-IQA)
DR-IQA exploits the inputs of IR models, degraded images, as references.
Our results can even be close to the performance of full-reference settings.
arXiv Detail & Related papers (2021-08-18T02:35:08Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Synthetic Sample Selection via Reinforcement Learning [8.099072894865802]
We propose a reinforcement learning based synthetic sample selection method that learns to choose synthetic images containing reliable and informative features.
In experiments on a cervical dataset and a lymph node dataset, the image classification performance is improved by 8.1% and 2.3%, respectively.
arXiv Detail & Related papers (2020-08-26T01:34:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.